Entrainment responses from a reentrant circuit with 2 entry sites: When the antidromic wavefront can drive.

Indian Pacing Electrophysiol J

Department of Cardiovascular Medicine, Cleveland Clinic, USA. Electronic address:

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361866PMC
http://dx.doi.org/10.1016/j.ipej.2024.06.006DOI Listing

Publication Analysis

Top Keywords

entrainment responses
4
responses reentrant
4
reentrant circuit
4
circuit entry
4
entry sites
4
sites antidromic
4
antidromic wavefront
4
wavefront drive
4
entrainment
1
reentrant
1

Similar Publications

Neural oscillations in beta (13-30 Hz) and gamma (>30 Hz) frequency bands index a variety of sensorimotor and cognitive processes. To compare two rehabilitation regimens for chronic stroke patients with a hemiparetic hand, we randomly assigned them to either music-supported therapy or physiotherapy for 10 weeks. Previously, we reported the music group's improved motor speed, mood, well-being, and rhythm perception.

View Article and Find Full Text PDF

Neural entrainment by speech in human auditory cortex revealed by intracranial recordings.

Prog Neurobiol

September 2025

The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, United States; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Tr

Humans live in an environment that contains rich auditory stimuli, which must be processed efficiently. The entrainment of neural oscillations to acoustic inputs may support the processing of simple and complex sounds. However, the characteristics of this entrainment process have been shown to be inconsistent across species and experimental paradigms.

View Article and Find Full Text PDF

The tracking umbrella: Diverse interpretations under a common neural term.

Ann N Y Acad Sci

September 2025

BCBL, Basque Center on Cognition, Brain and Language, Donostia, Spain.

Neural tracking, the alignment of brain activity with the temporal dynamics of sensory input, is a crucial mechanism underlying perception, attention, and cognition. While this concept has gained prominence in research on speech, music, and visual processing, its definition and methodological approaches remain heterogeneous. This paper critically examines neural tracking from both theoretical and methodological perspectives, highlighting how its interpretation varies across studies.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Cancer patients experience circadian rhythm disruptions during and after chemotherapy that can contribute to debilitating side effects. It is unknown how chemotherapy mediates circadian disruptions, and specifically the extent to which these disruptions occur at the level of the principal clock, the suprachiasmatic nuclei (SCN) of the hypothalamus. In the present study, we assessed how the commonly used chemotherapeutic, paclitaxel, impacts the SCN molecular clock and SCN-dependent behavioral adaptations to circadian challenges in female mice.

View Article and Find Full Text PDF