98%
921
2 minutes
20
Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250091 | PMC |
http://dx.doi.org/10.1016/j.immuni.2024.05.017 | DOI Listing |
Physiol Rep
September 2025
Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France.
Temperature-sensitive Transient Receptor Potential (TRP) channels contribute to modulating skin vascular tone. Their role in Raynaud's Phenomenon (RP) remains unknown. We aimed to investigate TRPs expression in the skin, along with microvascular reactivity to cooling in patients with primary and secondary RP, compared with healthy subjects.
View Article and Find Full Text PDFOpen Med (Wars)
August 2025
Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, China.
Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.
View Article and Find Full Text PDFOpen Heart
September 2025
Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
Aims: We investigated the prevalence of coronary microvascular dysfunction (CMD) and its association with severity of heart failure in patients with reduced or mildly reduced ejection fraction (HFrEF and HFmrEF).
Method: Patients with stable, symptomatic heart failure with left ventricular ejection fraction (LVEF) <50% were enrolled. Data collection included physical examination, blood samples, Kansas City Cardiomyopathy Questionnaire (KCCQ), carotid to femoral pulse wave velocity, echocardiography and adenosine-based transthoracic Doppler echocardiography to assess coronary flow reserve (CFR).
Neuroscience
September 2025
Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP 208024, India. Electronic address:
Hydrogen sulfide (HS) is an endogenously produced gasotransmitter that has garnered growing attention for its critical roles in cellular signalling and brain function. It regulates NMDA receptors during long-term potentiation, a fundamental mechanism underlying memory consolidation and influences neurotransmission and essential neurophysiological functions. HS is synthesized by three enzymes: cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MST) within the cell.
View Article and Find Full Text PDFNeurology
September 2025
Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
Background And Objectives: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular health, and its signature in familial frontotemporal dementia (FTD) remains unknown. The primary aim was to investigate CVR in genetic FTD using an fMRI index of vascular contractility termed resting-state fluctuation amplitudes (RSFAs) and to assess whether RSFA differences are moderated by age. A secondary aim was to study the relationship between RSFA and cognition.
View Article and Find Full Text PDF