Polymicrobial brain abscesses: A complex condition with diagnostic and therapeutic challenges.

J Neuropathol Exp Neurol

Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brain abscesses (BA) are focal parenchymal infections that remain life-threatening conditions. Polymicrobial BAs (PBAs) are complex coinfections of bacteria or bacterial and nonbacterial pathogens such as fungi or parasites, with diagnostic and therapeutic challenges. In this article, we comprehensively review the prevalence, pathogenesis, clinical manifestations, and microbiological, histopathological, and radiological features of PBAs, as well as treatment and prognosis. While PBAs and monomicrobial BAs have some similarities such as nonspecific clinical presentations, PBAs are more complex in their pathogenesis, pathological, and imaging presentations. The diagnostic challenges of PBAs include nonspecific imaging features at early stages and difficulties in identification of some pathogens by routine techniques without the use of molecular analysis. Imaging of late-stage PBAs demonstrates increased heterogeneity within lesions, which corresponds to variable histopathological features depending on the dominant pathogen-induced changes in different areas. This heterogeneity is particularly marked in cases of coinfections with nonbacterial pathogens such as Toxoplasma gondii. Therapeutic challenges in the management of PBAs include initial medical therapy for possibly underrecognized coinfections prior to identification of multiple pathogens and subsequent broad-spectrum antimicrobial therapy to eradicate identified pathogens. PBAs deserve more awareness to facilitate prompt and appropriate treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413443PMC
http://dx.doi.org/10.1093/jnen/nlae058DOI Listing

Publication Analysis

Top Keywords

therapeutic challenges
12
brain abscesses
8
diagnostic therapeutic
8
pbas
8
pbas complex
8
nonbacterial pathogens
8
pbas include
8
pathogens
5
polymicrobial brain
4
abscesses complex
4

Similar Publications

Background: Diabetic foot ulcers (DFUs) are a major clinical challenge, particularly among patients with refractory ulcers, that often lead to severe complications such as infection, amputation, and high mortality. Innovations supported by strong clinical evidence have the potential to improve healing outcomes, enhance quality of life, and reduce the economic burden on individuals and health care systems.

Objective: To describe the design of the concurrent optical and magnetic stimulation (COMS) therapy Investigational Device Exemption (IDE) study for refractory DFUs (MAVERICKS) trial.

View Article and Find Full Text PDF

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Low-grade non-muscle invasive bladder cancer is a specific category of bladder cancer with a favourable prognosis; however, its management presents several challenges. The risk of stage progression is very low, but approximately half of patients will experience recurrence within the first 5 years after diagnosis. This high propensity for recurrence, coupled with the threat of progression, mandates ongoing surveillance.

View Article and Find Full Text PDF