Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Eukaryotic elongation factor 1 alpha 2 (eEF1A2) encodes an isoform of the alpha subunit of the elongation factor 1 complex and is responsible for the enzymatic delivery of aminoacyl tRNA to the ribosome. Our proteomic analysis has identified eEF1A2 as one of the proteins expressed during malignant progression from adenocarcinoma in situ (AIS) to early invasive lung adenocarcinoma. The expression level of eEF1A2 in 175 lung adenocarcinomas was examined by immunohistochemical staining in relation to patient prognosis and clinicopathological factors. Quantitative PCR analysis and fluorescence in situ hybridization (FISH) were performed to evaluate the amplification of the eEF1A2 gene. Relatively high expression of eEF1A2 was observed in invasive adenocarcinoma (39/144 cases) relative to minimally invasive adenocarcinoma (1/10 cases) or AIS (0/21 cases). Among invasive adenocarcinomas, solid-type adenocarcinoma (15/32 cases, 47%) showed higher expression than other histological subtypes (23/92, 25%). Patients with eEF1A2-positive tumors had a significantly poorer prognosis than those with eEF1A2-negative tumors. Of the five tumors that were eEF1A2-positive, two cases showed amplified genomic eEF1A2 DNA, which was confirmed by both qPCR and FISH. These findings indicate that eEF1A2 overexpression occurs in the course of malignant transformation of lung adenocarcinomas and is partly due to eEF1A2 gene amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551808PMC
http://dx.doi.org/10.1111/pin.13457DOI Listing

Publication Analysis

Top Keywords

elongation factor
12
high expression
8
eukaryotic elongation
8
lung adenocarcinoma
8
eef1a2
8
lung adenocarcinomas
8
eef1a2 gene
8
invasive adenocarcinoma
8
adenocarcinoma
6
cases
5

Similar Publications

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a complex, heterogeneous disease characterized by frequent relapses and metastasis. Previous studies have reported that the invasion and progression of CRC in several cases can be controlled by targeting fusion genes. This study aimed to screen for potent fusion transcripts as potential molecular biomarkers and therapeutic targets for metastatic CRC (mCRC) using an approach.

View Article and Find Full Text PDF

Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.

View Article and Find Full Text PDF

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF