Bridging the Clinical-Computational Transparency Gap in Digital Pathology.

Arch Pathol Lab Med

From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart).

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context.—: Computational pathology combines clinical pathology with computational analysis, aiming to enhance diagnostic capabilities and improve clinical productivity. However, communication barriers between pathologists and developers often hinder the full realization of this potential.

Objective.—: To propose a standardized framework that improves mutual understanding of clinical objectives and computational methodologies. The goal is to enhance the development and application of computer-aided diagnostic (CAD) tools.

Design.—: This article suggests pivotal roles for pathologists and computer scientists in the CAD development process. It calls for increased understanding of computational terminologies, processes, and limitations among pathologists. Similarly, it argues that computer scientists should better comprehend the true use cases of the developed algorithms to avoid clinically meaningless metrics.

Results.—: CAD tools improve pathology practice significantly. Some tools have even received US Food and Drug Administration approval. However, improved understanding of machine learning models among pathologists is essential to prevent misuse and misinterpretation. There is also a need for a more accurate representation of the algorithms' performance compared to that of pathologists.

Conclusions.—: A comprehensive understanding of computational and clinical paradigms is crucial for overcoming the translational gap in computational pathology. This mutual comprehension will improve patient care through more accurate and efficient disease diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.5858/arpa.2023-0250-RADOI Listing

Publication Analysis

Top Keywords

computational pathology
8
computer scientists
8
understanding computational
8
computational
6
pathology
5
bridging clinical-computational
4
clinical-computational transparency
4
transparency gap
4
gap digital
4
digital pathology
4

Similar Publications

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF

Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.

Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

Despite advances in genomic diagnostics, the majority of individuals with rare diseases remain without a confirmed genetic diagnosis. The rapid emergence of advanced omics technologies, such as long-read genome sequencing, optical genome mapping and multiomic profiling, has improved diagnostic yield but also substantially increased analytical and interpretational complexity. Addressing this complexity requires systematic multidisciplinary collaboration, as recently demonstrated by targeted diagnostic workshops.

View Article and Find Full Text PDF