98%
921
2 minutes
20
This study attempted to build a prostate cancer (PC) prognostic risk model with mitochondrial feature genes. PC-related MTGs were screened for Cox regression analyses, followed by establishing a prognostic model. Model validity was analyzed via survival analysis and receiver operating characteristic (ROC) curves, and model accuracy was validated in the GEO dataset. Combining risk score with clinical factors, the independence of the risk score was verified by using Cox analysis, followed by generating a nomogram. The Gleason score, microsatellite instability (MSI), immune microenvironment, and tumor mutation burden were analyzed in two risk groups. Finally, the prognostic feature genes were verified through a q-PCR test. Ten PC-associated MTGs were screened, and a prognostic model was built. Survival analysis and ROC curves illustrated that the model was a good predictor for the risk of PC. Cox regression analysis revealed that risk score acted as an independent prognostic factor. The Gleason score and MSI in the high-risk group were substantially higher than in the low-risk group. Levels of ESTIMATE Score, Immune Score, Stromal Score, immune cells, immune function, immune checkpoint, and immunopheno score of partial immune checkpoints in the high-risk group were significantly lower than in the low-risk group. Genes with the highest mutation frequencies in the two groups were SPOP, TTN, and TP53. The q-PCR results of the feature genes were consistent with the gene expression results in the database. The 10-gene model based on MTGs could accurately predict the prognosis of PC patients and their responses to immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2330-3696 | DOI Listing |
J Neurooncol
September 2025
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.
World J Urol
September 2025
Department of Clinical Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350000, Fujian, China.
Objective: To develop and validate a prognostic nomogram for predicting the risk of proximal ureteral impacted calculi, supporting personalized clinical management.
Methods: This retrospective, multicenter study employed a continuous cohort of 391 patients with proximal ureteral stones treated between January 2021 and April 2024. Data from Longyan People's Hospital (affiliated with Xiamen Medical College) comprised the training set, while independent external validation was performed using data from The Fifth Affiliated Hospital of Fujian University of Traditional Chinese Medicine.
Eur J Nucl Med Mol Imaging
September 2025
Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
Purpose: In this retrospective study, whether [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers can predict the progression-free survival (PFS) and overall survival (OS) of patients with advanced pancreatic cancer was investigated.
Methods: Fifty-one patients who underwent [Ga]Ga-DOTA-FAPI-04 PET/MR scans before first-line chemotherapy were recruited. Imaging biomarkers, including the maximum tumor diameter, minimum apparent diffusion coefficient (ADC), maximum and mean standardized uptake values (SUV and SUV), fibroblast activation protein- (FAP-) positive tumor volume (FTV and W-FTV) and total lesion FAP expression (TLF and W-TLF), were recorded for primary and whole-body tumors.
Eur Arch Psychiatry Clin Neurosci
September 2025
Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
Khirurgiia (Mosk)
September 2025
Kuban State Medical University, Krasnodar, Russia.
Objective: To validate and assess clinical efficacy of a prognostic model for predicting severe acute pancreatitis (SAP) based on inflammatory markers (IL-6, ΔIL-22), thromboelastography parameters (K-time) and the BISAP score.
Material And Methods: A prospective observational cohort study enrolled 181 patients with acute pancreatitis. Serum IL-6 and IL-22 were measured in 24 and 48 hours after clinical manifestation, respectively.