98%
921
2 minutes
20
Developing AI models for digital pathology has traditionally relied on single-scale analysis of histopathology slides. However, a whole slide image is a rich digital representation of the tissue, captured at various magnification levels. Limiting our analysis to a single scale overlooks critical information, spanning from intricate high-resolution cellular details to broad low-resolution tissue structures. In this study, we propose a model-agnostic multiresolution feature aggregation framework tailored for the analysis of histopathology slides in the context of breast cancer, on a multicohort dataset of 2038 patient samples. We have adapted 9 state-of-the-art multiple instance learning models on our multi-scale methodology and evaluated their performance on grade prediction, TP53 mutation status prediction and survival prediction. The results prove the dominance of the multiresolution methodology, and specifically, concatenating or linearly transforming via a learnable layer the feature vectors of image patches from a high (20x) and low (10x) magnification factors achieve improved performance for all prediction tasks across domain-specific and imagenet-based features. On the contrary, the performance of uniresolution baseline models was not consistent across domain-specific and imagenet-based features. Moreover, we shed light on the inherent inconsistencies observed in models trained on whole-tissue-sections when validated against biopsy-based datasets. Despite these challenges, our findings underscore the superiority of multiresolution analysis over uniresolution methods. Finally, cross-scale analysis also benefits the explainability aspects of attention-based architectures, since one can extract attention maps at the tissue- and cell-levels, improving the interpretation of the model's decision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3413533 | DOI Listing |
BMC Cancer
September 2025
Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
Acta Pharmacol Sin
September 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.