Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing AI models for digital pathology has traditionally relied on single-scale analysis of histopathology slides. However, a whole slide image is a rich digital representation of the tissue, captured at various magnification levels. Limiting our analysis to a single scale overlooks critical information, spanning from intricate high-resolution cellular details to broad low-resolution tissue structures. In this study, we propose a model-agnostic multiresolution feature aggregation framework tailored for the analysis of histopathology slides in the context of breast cancer, on a multicohort dataset of 2038 patient samples. We have adapted 9 state-of-the-art multiple instance learning models on our multi-scale methodology and evaluated their performance on grade prediction, TP53 mutation status prediction and survival prediction. The results prove the dominance of the multiresolution methodology, and specifically, concatenating or linearly transforming via a learnable layer the feature vectors of image patches from a high (20x) and low (10x) magnification factors achieve improved performance for all prediction tasks across domain-specific and imagenet-based features. On the contrary, the performance of uniresolution baseline models was not consistent across domain-specific and imagenet-based features. Moreover, we shed light on the inherent inconsistencies observed in models trained on whole-tissue-sections when validated against biopsy-based datasets. Despite these challenges, our findings underscore the superiority of multiresolution analysis over uniresolution methods. Finally, cross-scale analysis also benefits the explainability aspects of attention-based architectures, since one can extract attention maps at the tissue- and cell-levels, improving the interpretation of the model's decision.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3413533DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
analysis histopathology
8
histopathology slides
8
domain-specific imagenet-based
8
imagenet-based features
8
analysis
6
models
5
unveiling power
4
power model-agnostic
4
model-agnostic multiscale
4

Similar Publications

Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.

View Article and Find Full Text PDF

Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.

View Article and Find Full Text PDF

Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.

View Article and Find Full Text PDF