Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Manipulating the motion of water droplets on surfaces, which is crucial for various applications, such as microfluidics and heat transfer, presents considerable challenges, primarily due to the significant influence of capillary forces. This effect becomes more pronounced when droplets are in close proximity, often resulting in undesired coalescence. Triboelectrification, which involves charging pure water droplets, is a promising approach to enhance the ability to manipulate water droplets. For effective triboelectrification, charges must accumulate within the droplets; this ensures efficient and sustained droplet manipulation while minimizing dissipation. Low-friction, superhydrophobic, insulating surfaces are ideal for this purpose. However, few studies have explored the application of insulating superhydrophobic surfaces to manipulate droplet motion. In this study, we investigated the behavior of water droplets on insulating superhydrophobic quartz surfaces after triboelectrification. The droplets acquired significant charge when dripped onto a superhydrophobic glass surface. Consequently, these charged droplets exhibited behaviors such as repulsion and acceleration from one another, uphill movement, and rapid long-distance transport to specific positions. These advancements in droplet manipulation techniques hold promise for diverse fields such as microfluidics and heat exchangers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01366DOI Listing

Publication Analysis

Top Keywords

water droplets
20
droplets
9
repulsion acceleration
8
superhydrophobic glass
8
microfluidics heat
8
droplet manipulation
8
insulating superhydrophobic
8
water
5
superhydrophobic
5
acceleration coalescence
4

Similar Publications

We report a rare case in which the inflation lumen at the tip of an endotracheal tube (ETT) was open, leading to intraoperative air leakage and cuff deflation. A patient with Down syndrome undergoing planned dental treatment under general anesthesia was induced and nasally intubated with a cuffed ETT that was then inflated with 5 mL of air. Soon thereafter, it was noted that the pilot balloon was deflated and filled with water droplets.

View Article and Find Full Text PDF

Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.

View Article and Find Full Text PDF

Promotion of CO Reactivity by Organic Acid on Aerosol Surfaces.

J Am Chem Soc

September 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Recently, the atmospheric aerosol surface, which is reported to be quite acidic, is recognized as an important microreactive medium for atmospheric chemistry, profoundly impacting air quality and global climate. Nevertheless, the molecular-level understanding of the effect of surface-bound acids on atmospheric chemical reactions remains limited. Herein, the reactions between CO and NH/amines at the air-water interface with organic acids are investigated using combined molecular dynamic simulations and quantum chemical calculations.

View Article and Find Full Text PDF

Effect of pH and Particle Charge on the Interfacial Properties of Biocatalytic Pickering Emulsions─Where Are the Enzymes Located?

Langmuir

September 2025

Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.

Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.

View Article and Find Full Text PDF

Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.

View Article and Find Full Text PDF