A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dipolar Microenvironment Engineering Enabled by Electron Beam Irradiation for Boosting Catalytic Performance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites. By varying the composition of the microenvironment scaffold structure, the contact and interaction behavior with the reaction participants can be tuned, thereby affecting the catalytic activity and selectivity. As a result, the framework catalysts produced in this way exhibit excellent catalytic performance in the synthesis of glycinate esters and indole derivatives. This manipulation is reminiscent of enzymatic catalysis, which adjusts the internal polarity environment and controls the output of products by altering the scaffold structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321705PMC
http://dx.doi.org/10.1002/advs.202401562DOI Listing

Publication Analysis

Top Keywords

dipolar microenvironment
8
electron beam
8
beam irradiation
8
catalytic performance
8
catalytic sites
8
scaffold structure
8
catalytic
5
dipolar
4
microenvironment engineering
4
engineering enabled
4

Similar Publications