98%
921
2 minutes
20
Artificial photoelectrochemistry (PEC) has emerged as a promising and efficient technology for the sustainable conversion of solar energy into chemicals. In this study, we present a refined PEC process that enables the highly selective and stable production of piperonal and other valuable aldehydes through the oxidation of the corresponding alcohols. By employing FeO or TiO as the photoanode material and 2,2,6,6-tetramethylpiperidinooxy (TEMPO) as a redox mediator in an HO/acetonitrile solution, we achieve 100% selectivity and a >95% Faradaic efficiency for piperonal production from piperonyl alcohol (PA) oxidation. Remarkably, we reveal the enhancing effect on the PA oxidation reactivity of appropriate-amount water in the solvent as it plays a crucial role in inhibiting the photoelectron-hole recombination efficiency and facilitating charge transfer. Mechanistic analysis suggests that TEMPO-mediated PA oxidation involves the formation of •O radicals by the reduction of oxygen on the cathode, resulting in water as the sole byproduct. Furthermore, our PEC oxidation system exhibits applications on the 100%-selective production of various conjugated aldehydes, including 4-anisaldehyde, cuminaldehyde, and the vitamin B6 derivative. By implementing a TiO//FeO dual-photoanode system, we achieve an enhanced piperonal production rate of 31.2 μmol h cm at 1.0 V vs Ag/Ag and demonstrate its stability over a 102 h cyclic test, ensuring near-quantitative yield. This research illuminates the potential of the PEC strategy as a generally applicable method for the efficient production of high-value aldehydes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c01453 | DOI Listing |
ACS Electrochem
September 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom.
The development of copper-catalyzed C-H functionalization processes is challenging due to the inefficiency of conventional chemical oxidants in regenerating the copper catalyst. This study details the development of a mediated electrosynthetic approach involving triple catalytic cycles in transient C-H functionalization to achieve efficient copper-catalyzed C-(sp)-H sulfonylation of benzylamines with sodium sulfinate salts. The triple catalytic system consists of a copper organometallic cycle for C-H functionalization, an aldehyde transient directing group (TDG) as an organocatalyst for imine formation, and a ferrocenium salt as an electrocatalyst.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States.
The direct transformation of C-H bonds into C-C bonds via cross-dehydrogenative coupling (CDC) represents a powerful strategy in synthetic chemistry, enabling streamlined bond construction without the need for prefunctionalized substrates. While traditional CDC approaches rely on polar mechanisms and preactivation of one of the C-H partners, recent advances have introduced radical-based strategies that employ a hydrogen atom transfer (HAT) approach to access carbon-centered radicals from unactivated substrates. Herein, we report a nickel-catalyzed CDC reaction between aldehydes and alkenes for the synthesis of skipped enones, leveraging aryl radicals as intermolecular HAT agents.
View Article and Find Full Text PDFJ Org Chem
September 2025
School of Chemistry, O'Brien Centre for Science, University College Dublin, Dublin 4, Belfield D04 N2E5, Ireland.
Ynones are attractive molecular building blocks owing to their electrophilic character, which can be exploited in a variety of functionalization strategies, giving rise to valuable reaction products. This work presents a photochemical strategy for the direct generation of ynones from aldehydes and substituted alkynes bearing radicofugal groups, such as sulfones. Using TBADT (tetrabutylammonium decatungstate) as a photocatalyst, the direct photochemical synthesis of a variety of ynones is achieved in high yields and short reaction times.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830017, China. Electronic address:
Oligosaccharides are increasingly valuable for preparing noble metal (NM) nanoparticles (NPs) due to excellent biocompatibility and abundant reducing functional groups (e.g., hydroxyl, amino, and aldehyde groups).
View Article and Find Full Text PDFOrg Lett
September 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
We report herein the first reductive alkylation/aldol reaction via dual nickel/photoredox catalysis. This catalytic strategy completes the traditional approaches that require the performance of reactive organometallic reagents. By the simple assembly of unactivated alkyl halides, α,β-unsaturated carbonyls, and aldehydes in one-pot reaction, a variety of synthetically valuable β-hydroxyl carbonyl compounds can be synthesized under mild conditions with moderate to good yields.
View Article and Find Full Text PDF