Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: differential expression analysis is one of the most popular activities in transcriptomic studies based on next-generation sequencing technologies. In fact, differentially expressed genes (DEGs) between two conditions represent ideal prognostic and diagnostic candidate biomarkers for many pathologies. As a result, several algorithms, such as DESeq2 and edgeR, have been developed to identify DEGs. Despite their widespread use, there is no consensus on which model performs best for different types of data, and many existing methods suffer from high False Discovery Rates (FDR).

Methods: we present a new algorithm, DeClUt, based on the intuition that the expression profile of differentially expressed genes should form two reasonably compact and well-separated clusters. This, in turn, implies that the bipartition induced by the two conditions being compared should overlap with the clustering. The clustering algorithm underlying DeClUt was designed to be robust to outliers typical of RNA-seq data. In particular, we used the average silhouette function to enforce membership assignment of samples to the most appropriate condition.

Results: DeClUt was tested on real RNA-seq datasets and benchmarked against four of the most widely used methods (edgeR, DESeq2, NOISeq, and SAMseq). Experiments showed a higher self-consistency of results than the competitors as well as a significantly lower False Positive Rate (FPR). Moreover, tested on a real prostate cancer RNA-seq dataset, DeClUt has highlighted 8 DE genes, linked to neoplastic process according to DisGeNET database, that none of the other methods had identified.

Conclusions: our work presents a novel algorithm that builds upon basic concepts of data clustering and exhibits greater consistency and significantly lower False Positive Rate than state-of-the-art methods. Additionally, DeClUt is able to highlight relevant differentially expressed genes not otherwise identified by other tools contributing to improve efficacy of differential expression analyses in various biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108258DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
expressed genes
16
differential expression
8
tested real
8
lower false
8
false positive
8
positive rate
8
declut
6
genes
5
declut decluttering
4

Similar Publications

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.

Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.

View Article and Find Full Text PDF

Introduction: Studies suggest that serotonin (5-HT) plays an important role in alcohol use disorder (AUD). While several receptor subtypes modulate the role of 5-HT in AUD, evidence suggests that 5-HT and 5-HT receptors may be directly involved in alcohol drinking due to their interaction with the mesolimbic dopaminergic system. The aim of the present study was to investigate the effects of 5-HT and 5-HT antagonists, alone or in combination, on the acquisition and expression (i.

View Article and Find Full Text PDF