98%
921
2 minutes
20
Cognitive impairment is a commonly observed complication following myocardial infarction; however, the underlying mechanisms are still not well understood. The most recent research suggests that extracellular signal-regulated kinase (ERK) plays a critical role in the development and occurrence of cognitive dysfunction-related diseases. This study aims to explore whether the ERK inhibitor U0126 targets the ERK/Signal Transducer and Activator of Transcription 1 (STAT1) pathway to ameliorate cognitive impairment after myocardial infarction. To establish a mouse model of myocardial infarction, we utilized various techniques including Echocardiography, Hematoxylin-eosin (HE) staining, Elisa, Open field test, Elevated plus maze test, and Western blot analysis to assess mouse cardiac function, cognitive function, and signal transduction pathways. For further investigation into the mechanisms of cognitive function and signal transduction, we administered the ERK inhibitor U0126 via intraperitoneal injection. Reduced total distance and activity range were observed in mice subjected to myocardial infarction during the open field test, along with decreased exploration of the open arms in the elevated plus maze test. However, U0126 treatment exhibited a significant improvement in cognitive decline, indicating a protective effect through the inhibition of the ERK/STAT1 signaling pathway. Hence, this study highlights the involvement of the ERK/STAT1 pathway in regulating cognitive dysfunction following myocardial infarction and establishes U0126 as a promising therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12012-024-09877-y | DOI Listing |
Mol Biol Rep
September 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).
View Article and Find Full Text PDFClin Res Cardiol
September 2025
Department of Cardiology, University Heart Center, University Hospital Zurich, Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
Background: Diabetic patients with ST-segment elevation myocardial infarction (STEMI) are at an increased risk of cardiovascular events as compared to non-diabetic patients. This analysis investigated outcomes of diabetic patients presenting with multivessel disease (MVD) and STEMI in a contemporary trial and the relevance of an immediate versus staged multivessel PCI strategy in this high-risk population.
Methods: Patients enrolled in the MULTISTARS AMI trial were stratified according to the presence/absence of diabetes.
Herz
September 2025
Department of Cardiology, The Third Clinical College of Wenzhou Medical University, 326000, Wenzhou, Zhejiang, China.
Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.
Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.
JACC Case Rep
July 2025
Department of Emergency Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA; Texas Emergency Medicine Research Center, Houston, Texas, USA.
Background: The timely transfer of patients with ST-segment elevation myocardial infarction (STEMI) to percutaneous coronary intervention-capable centers is critical for improving outcomes. Although the American Heart Association recommends a door-in-door-out (DIDO) time of ≤30 minutes, national compliance remains low.
Project Rationale: At Harris Health, no patients with STEMI met this benchmark before 2022.
Kardiologiia
September 2025
Department of Cardiology, The Ninth Medical Center, Chinese PLA General Hospital.
Background Hyperuricemia (HUA) frequently coexists with coronary artery disease (CAD) and is linked to adverse cardiovascular outcomes. The long-term impact of urate-lowering therapy (ULT) on clinical outcomes, including all-cause mortality and major adverse cardiovascular events (MACEs), in CAD patients after percutaneous coronary intervention (PCI) has not been determined. That was the aim of this study.
View Article and Find Full Text PDF