Distribution characteristics and integrated ecological risks evaluation modelling of microplastics and heavy metals in geological high background soil.

Sci Total Environ

Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China; College of Resources and Environmental Engineering, Guizhou University, Guiya

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microplastics (MPs), a novel pollutant, and heavy metals (HMs) significantly affect soil ecology. The study investigated HMs and MPs in Qianxi's high geological background soil, established a model for risk evaluation with MPs types and shapes, and proposed a two-dimensional comprehensive index model for MPs-HMs combined pollution and risk evaluation criterion. The results revealed a high soil Cd concentration, with a mean value of 0.38 mg·kg. Additionally, soils from soybean-wheat intercropping-potato-corn rotation (SWI-PCR) exhibited significantly higher concentrations of Hg, As, and Pb compared with those from soybean-wheat intercropping-corn rotation (SWI-CR). Moreover, the soil exhibited a high abundance of MPs (8667.66 ± 3864.26 items·kg), mainly characterized by PS and fiber. The mean of adjusted ecological risk index (ARI) for MPs in soil was 525.27, indicating a grade 3 risk. The two-dimensional combined index (TPI) was used to assess the ecological risk of MPs-HMs combined pollution, exhibiting an exceedance rate of 56 % with a mean of 445.07. The risk level of the combined pollution was graded as 6, indicating high risk. The microplastic risk evaluation model and the comprehensive evaluation method of combined pollution established in this study provide a reference for the future risk evaluation of multi-pollutant combined pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173602DOI Listing

Publication Analysis

Top Keywords

combined pollution
20
risk evaluation
16
risk
9
heavy metals
8
background soil
8
mps-hms combined
8
ecological risk
8
evaluation
6
soil
6
combined
6

Similar Publications

Temperature elevation intensifies the toxicity of metals to terrestrial invertebrates: results of a meta-analysis.

Braz J Biol

September 2025

Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Departamento de Engenharia Ambiental, São José dos Campos, SP, Brasil.

The present study carried out the first systematic review with meta-analysis on the effects of metals and temperature rise individually and their associations with terrestrial invertebrates. Initially, a systematic review of peer-reviewed articles was performed. Meta-analysis demonstrated that metals negatively affected the fitness of annelids, arthropods, and nematodes and positively affected physiological regulation in annelids.

View Article and Find Full Text PDF

Source, dynamics, and risks of microplastics and nanoplastics in agricultural groundwater systems.

An Acad Bras Cienc

September 2025

Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.

Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.

View Article and Find Full Text PDF

Sulfate Promotes Amine Salt Ozonation in Atmospheric Aerosols.

J Am Chem Soc

September 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF

Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.

Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.

View Article and Find Full Text PDF