98%
921
2 minutes
20
Clostridium perfringens is an important opportunistic microorganism in commercial poultry production that is implicated in necrotic enteritis (NE) outbreaks. This disease poses a severe financial burden on the global poultry industry, causing estimated annual losses of $6 billion globally. The ban on in-feed antibiotic growth promoters has spurred investigations into approaches of alternatives to antibiotics, among which Bacillus probiotics have demonstrated varying degrees of effectiveness against NE. However, the precise mechanisms underlying Bacillus-mediated beneficial effects on host responses in NE remain to be further elucidated. In this manuscript, we conducted in vitro and genomic mining analysis to investigate anti-C. perfringens activity observed in the supernatants derived from 2 Bacillus amyloliquefaciens strains (FS1092 and BaD747). Both strains demonstrated potent anti-C. perfringens activities in in vitro studies. An analysis of genomes from 15 B. amyloliquefaciens, 11 B. velezensis, and 2 B. subtilis strains has revealed an intriguing clustering pattern among strains known to possess anti-C. perfringens activities. Furthermore, our investigation has identified 7 potential antimicrobial compounds, predicted as secondary metabolites through antiSMASH genomic mining within the published genomes of B. amyloliquefaciens species. Based on in vitro analysis, BaD747 may have the potential as a probiotic in the control of NE. These findings not only enhance our understanding of B. amyloliquefaciens's action against C. perfringens but also provide a scientific rationale for the development of novel antimicrobial therapeutic agents against NE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214307 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.103871 | DOI Listing |
Appl Biochem Biotechnol
September 2025
School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, P.O. 54590, Lahore, Pakistan.
Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.
View Article and Find Full Text PDFJ Biotechnol
September 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China. Electronic address:
Cycloastragenol (CA), the triterpenoid aglycone of astragaloside (ASI), is a telomerase activator and potential anti-aging drug with broad application prospects. Due to the rapid increase of its market demand in recent years, efficient production of CA has attracted increasing attention. In this study, the novel β-xylosidase XylO2 from Aspergillus aculeatus was identified through genome mining.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFSynth Syst Biotechnol
December 2025
Department of Pharmacy of the Fourth Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Nitrogen-nitrogen (N-N) bond-forming enzymes are rare but play vital roles in both primary and secondary metabolism. Guided by a nitric oxide synthase (NOS)-based genome mining strategy, we report the discovery and characterization of a new heme-dependent enzyme system that catalyzes intermolecular N-N bond formation. Using both in vivo and in vitro reconstitution approaches, we demonstrated that a protein complex, comprising a heme enzyme and a 2[4Fe-4S] ferredoxin partner, mediates the coupling of the α-amine group of l-aspartate with inorganic nitrogen oxide species, such as nitrite or nitric oxide, to generate hydrazinosuccinic acid, a key biosynthetic precursor in several natural product pathways.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
Anthracnose, caused by Colletotrichum gloeosporioides, poses a significant threat to blueberries, necessitating a deeper understanding of the genetic mechanisms underlying resistance to develop efficient breeding strategies. Here, we conducted a genome-wide association study on 355 advanced selections of southern highbush blueberry from the University of Florida Blueberry Breeding and Genomics Program. Visual scores and image analyses were used for assessing disease severity.
View Article and Find Full Text PDF