98%
921
2 minutes
20
Flexible electronics, like electronic skin (e-skin), rely on stretchable conductive materials that integrate diverse components to enhance mechanical, electrical, and interfacial properties. However, poor biocompatibility, bacterial infections, and limited compatibility of functional additives within polymer matrices hinder healthcare sensors' performance. This study addresses these challenges by developing an antibacterial hydrogel using polyvinyl alcohol (PVA), konjac glucomannan (KGM), borax (B), and flower-shaped silver nanoparticles (F-AgNPs), referred as PKB/F-AgNPs hydrogel. The developed hydrogel forms a hierarchical network structure, with a tensile strength of 96 kPa, 83% self-healing efficiency within 60 minutes, and 128% cell viability in Cell Counting Kit-8 (CCK-8) assays, indicating excellent biocompatibility. It also shows strong antibacterial efficacy against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Blue light irradiation enhances its antibacterial activity by 1.3-fold for E. coli and 2.2-fold for S. aureus. The hydrogel's antibacterial effectiveness is assessed by monitoring changes in electrical conductivity, providing a cost-effective alternative to traditional microbial culture assays. The PKB/F-AgNPs hydrogel's flexibility and electrical conductivity enable it to function as strain sensors for detecting body movements and facial expressions. This antibacterial hydrogel underscores its potential for future human-machine interfaces and wearable electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202401201 | DOI Listing |
Biomater Sci
September 2025
School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
Copper ions have been considered to hold promise for the treatment of wound infections due to their unique characteristics that exhibit not only antibacterial activities through multiple bactericidal mechanisms but also tissue reparative activities by acting as a co-factor for many angiogenic promoters and enzymes. However, higher doses are necessary to achieve sufficient bactericidal and antibiofilm effects. The objective of this study is to develop copper nanoparticles (CuNPs) as an antimicrobial agent by harnessing the characteristics of copper and vitamin C (VC) to form a sustained catalytic cycle, leading to a significant enhancement of bactericidal and antibiofilm effects when compared with the use of CuNPs alone.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy.
View Article and Find Full Text PDFJ Burn Care Res
September 2025
Shanghai Starriver Bilingual School, Shanghai, China.
Background: Despite the advancements of pharmacological treatments and gauze dressings in the field of skin wound healing, these methods present numerous limitations. Therefore, developing a multifunctional material capable of efficiently promoting skin wound healing is particularly crucial.
Methods: Citric acid (CA)-modified chitosan (CS) loaded with Shikonin (SK) (CA-CS-SK) hydrogel was prepared via the freeze-thaw method.
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.
Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.
View Article and Find Full Text PDF