Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

African swine fever, caused by African swine fever virus (ASFV), is a highly contagious and fatal disease that poses a significant threat to the global pig industry. The limited information on ASFV pathogenesis and ASFV-host interactions has recently prompted numerous transcriptomic studies. However, most of these studies have focused on elucidating the transcriptome profiles of ASFV-infected porcine alveolar macrophages . Here, we analyzed dynamic transcriptional patterns in nine organ tissues (spleen, submandibular lymph node, mesenteric lymph node, inguinal lymph node, tonsils, lungs, liver, kidneys, and heart) obtained from pigs in the early stages of ASFV infection (1 and 3 d after viremia). We observed rapid spread of ASFV to the spleen after viremia, followed by broad transmission to the liver and lungs and subsequently, the submandibular and inguinal lymph nodes. Profound variations in gene expression patterns were observed across all organs and at all time-points, providing an understanding of the distinct defence strategies employed by each organ against ASFV infection. All ASFV-infected organs exhibited a collaborative response, activating immune-associated genes such as , thereby triggering a pro-inflammatory cytokine storm and interferon activation. Functional analysis suggested that ASFV exploits the PI3K-Akt signalling pathway to evade the host immune system. Overall, our findings provide leads into the mechanisms underlying pathogenesis and host immune responses in different organs during the early stages of infection, which can guide further explorations, aid the development of efficacious antiviral strategies against ASFV, and identify valuable candidate gene targets for vaccine development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210422PMC
http://dx.doi.org/10.1080/22221751.2024.2366406DOI Listing

Publication Analysis

Top Keywords

african swine
12
swine fever
12
lymph node
12
transcriptome profiles
8
organ tissues
8
fever virus
8
inguinal lymph
8
early stages
8
asfv infection
8
host immune
8

Similar Publications

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

ANASFV: a workflow for African swine fever virus whole-genome analysis.

Microb Genom

September 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.

African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.

View Article and Find Full Text PDF

Exploring Antiviral Strategies to Combat African Swine Fever.

FEMS Microbiol Rev

September 2025

CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.

African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.

View Article and Find Full Text PDF

African swine fever (ASF) is a devastating disease of pigs that is endemic in Nigeria. Smallholder farmers have been implicated in driving disease spread, yet little is known about their perceptions about the disease and the role they play in the local epidemiology. Additionally, it remains inadequately documented how other smallholder pig value chain actors perceive and influence ASF spread.

View Article and Find Full Text PDF