98%
921
2 minutes
20
In 2023, WHO ranked chronic obstructive pulmonary disease (COPD) as the third leading cause of death, with 3.23 million fatalities in 2019. The intricate nature of the disease, which is influenced by genetics, environment, and lifestyle, is evident. The effect of air pollution and changes in atmospheric substances because of global warming highlight the need for this research. These environmental shifts are associated with the emergence of various respiratory infections such as COVID-19. RNA sequencing is pivotal in airway diseases, including COPD, as it enables comprehensive transcriptome analysis, biomarker discovery, and uncovers novel pathways. It facilitates personalized medicine by tracking dynamic changes in gene expression in response to various triggers. However, the limited research on East Asian populations may overlook the unique nuances of COPD development and progression. Bridging this gap and using peripheral blood samples for systemic analysis are crucial for comprehensive and globally applicable COPD diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156965 | PMC |
http://dx.doi.org/10.1038/s41597-024-03389-8 | DOI Listing |
Pulm Ther
September 2025
Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
Introduction: Preserved ratio impaired spirometry (PRISm) is an important phenotype of pulmonary function in clinical and public health practice. It is possible for some patients to have chronic obstructive pulmonary disease (COPD) at an early stage. At present there is little research on the association of PRISm with type 2 (T2) inflammation biomarkers.
View Article and Find Full Text PDFImmunol Invest
September 2025
Respiratory and Critical Care Medicine, The 940th Hospital of Joint Logistics Support Force of chinese PLA, Lanzhou, China.
Background: Pulmonary neuroendocrine cells (PNECs) are specialized airway epithelial cells with dual sensory and secretory functions. They release bioactive mediators --including neuropeptides such as calcitonin gene-related peptide (CGRP) and gastrin-releasing peptide (GRP), and neurotransmitters such as 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) --that regulate airway smooth-muscle tone, mucus production, and immune responses. In chronic obstructive pulmonary disease (COPD), these PNEC-derived mediators contribute to airway inflammation, remodeling, and smooth-muscle dysfunction.
View Article and Find Full Text PDFRespir Med
September 2025
Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Dundee, United Kingdom. Electronic address:
Background: Eosinophilic chronic obstructive pulmonary disease (eCOPD), characterized by type 2 inflammation, is an emerging target for biologic therapies.
Objective: To indirectly compare the efficacy of dupilumab and mepolizumab in eCOPD, defined as blood eosinophil counts ≥300 cells/μL, by synthesizing data from phase 3 randomized controlled trials: BOREAS and NOTUS for dupilumab, MATINEE for mepolizumab.
Methods: We performed an indirect comparison of trial primary and secondary outcomes including annual exacerbation rates (AER), quality of life (St.
J Chromatogr B Analyt Technol Biomed Life Sci
September 2025
Center of Scientific Research, Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province,161006, China; Key Laboratory of Homology of Medicine and Food Resources and Metabolic Disease Prevention and Treatment of Heilongjiang Province, Qiqihar, Heilongjiang Province,16
Wendan Decoction (WDD), a classic formula for the expectoration of phlegm, has been acknowledged for the management of chronic obstructive pulmonary disease (COPD). Nevertheless, the therapeutic components and mechanism of WDD in COPD remain elusive. Hence, an analytical strategy for extensive investigation of the constituents in WDD combining UFLC-ESI-Q/TOF-MS and subsequent network pharmacology was conducted, and the appropriate preparation of bio-samples was involved with mechanistic bioanalysis including multi-technique metabolomics and molecular biological means, that pivotal factors such as PTGS2, arachidonic acid (AA) metabolism, and PI3K-AKT signaling pathway were recommended as potential central elements for the anti-COPD effects.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2025
School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China. Electronic address:
Background And Objective: The quantitative knowledge of the influence of the small airway disease on the functional changes in chronic obstructive pulmonary disease (COPD) patients has been severely limited.
Methods: This study presents an innovative patient-specific computational framework that integrates CT and OCT imaging data with multiscale computational fluid dynamics (CFD) analysis. A three-dimensional tracheobronchial tree is reconstructed from CT scans of a mild COPD patient, spanning from the central airway to the 4th generation bronchial bifurcations.