Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147498PMC
http://dx.doi.org/10.1515/nanoph-2023-0879DOI Listing

Publication Analysis

Top Keywords

strong coupling
12
molecular material
8
coupling molecular
4
molecular systems
4
systems simple
4
simple predictor
4
predictor employing
4
employing routine
4
routine optical
4
optical measurements
4

Similar Publications

Optical manipulation techniques have been widely applied in the biomedical field. However, the key issues limiting the efficiency of optical manipulation techniques are the weak driving force of optical scattering and the small working range of optical gradient forces. The optothermal Marangoni convection enables effective control of flow fields through optical means, and particle manipulation based on this mechanism offers advantages such as a wide working range, strong driving force, and high flexibility.

View Article and Find Full Text PDF

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4  eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.

View Article and Find Full Text PDF

Giant Graviton Correlators as Defect Systems.

Phys Rev Lett

August 2025

University of Chinese Academy of Sciences, Kavli Institute for Theoretical Sciences, Beijing 100190, China.

We consider correlation functions of two maximal giant gravitons and two light 1/2-BPS (Bogomol'nyi-Prasad-Sommerfield) operators in 4D N=4 SYM (super Yang-Mills). Viewed as two-point correlators in the presence of a zero-dimensional defect, they can be completely fixed at strong coupling using analytic bootstrap techniques. We determine all infinitely such correlators for arbitrary light 1/2-BPS operators and find that the result can be repackaged into a simple generating function thanks to a hidden higher-dimensional symmetry.

View Article and Find Full Text PDF

Optomechanical and electro-optomechanical systems have emerged as one of the most promising approaches for quantum microwave-to-optical transduction to interconnect distributed quantum modalities for scaling the quantum systems. These systems use suspended structures to increase mode overlap and mitigate loss to achieve high efficiency. However, the suspended design's poor heat dissipation under strong drive limits the ultimate efficiency.

View Article and Find Full Text PDF