98%
921
2 minutes
20
Background: The use of Intra-aortic Balloon Pump (IABP) and Impella devices as a bridge to heart transplantation (HTx) has increased significantly in recent times. This study aimed to create and validate an explainable machine learning (ML) model that can predict the failure of status two listings and identify the clinical features that significantly impact this outcome.
Methods: We used the UNOS registry database to identify HTx candidates listed as UNOS Status 2 between 2018 and 2022 and supported with either Impella (5.0 or 5.5) or IABP. We used the eXtreme Gradient Boosting (XGBoost) algorithm to build and validate ML models. We developed two models: (1) a comprehensive model that included all patients in our cohort and (2) separate models designed for each of the 11 UNOS regions.
Results: We analyzed data from 4,178 patients listed as Status 2. Out of them, 12% had primary outcomes indicating Status 2 failure. Our ML models were based on 19 variables from the UNOS data. The comprehensive model had an area under the curve (AUC) of 0.71 (±0.03), with a range between 0.44 (±0.08) and 0.74 (±0.01) across different regions. The models' specificity ranged from 0.75 to 0.96. The top five most important predictors were the number of inotropes, creatinine, sodium, BMI, and blood group.
Conclusion: Using ML is clinically valuable for highlighting patients at risk, enabling healthcare providers to offer intensified monitoring, optimization, and care escalation selectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144884 | PMC |
http://dx.doi.org/10.3389/fcvm.2024.1383800 | DOI Listing |
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFPLoS One
September 2025
Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia.
View Article and Find Full Text PDFJ Chem Phys
September 2025
National Synchrotron Radiation Laboratory, State Key Laboratory of Advanced Glass Materials, Anhui Provincial Engineering Research Center for Advanced Functional Polymer Films, University of Science and Technology of China, Hefei, Anhui 230029, China.
Polymer density is a critical factor influencing material performance and industrial applications, and it can be tailored by modifying the chemical structure of repeating units. Traditional polymer density characterization methods rely heavily on domain expertise; however, the vast chemical space comprising over one million potential polymer structures makes conventional experimental screening inefficient and costly. In this study, we proposed a machine learning framework for polymer density prediction, rigorously evaluating four models: neural networks (NNs), random forest (RF), XGBoost, and graph convolutional neural networks (GCNNs).
View Article and Find Full Text PDFNutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDF