State of the art in self-sustaining smoldering for remediation of contaminated soil and disposal of organic waste.

J Hazard Mater

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, Zhejiang Province, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, 100085 Beijing, China. Electronic address:

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Smoldering combustion applications in energy and environmental fields have attracted increasing research attention in recent years. Smoldering has demonstrated considerable green advantages, such as having a low carbon footprint and being sustainable, for remediation of organic-contaminated soil and disposal of high-moisture, low-calorific value, slurry-type organic waste due to its self-sustaining reaction characteristic. This review aims to analyze and summarize studies on smoldering applications to refine the critical components of applied smoldering systems, key reaction characteristics, and corresponding influencing conditions that affect their effectiveness. Furthermore, the common characteristics and influencing factors of different smoldering application scenarios are compared to provide a comprehensive reference for commercial applications. Thus, this paper specifically includes an overview of the impact of inert porous media, combustible material, and oxidants in applied smoldering systems; a review of the research status of the three key reaction characteristics, including peak temperature, smoldering front propagation velocity, and self-sustainability; a summary of typical influencing factors, disposal material characteristics, and control conditions in the two mainstream application directions, which are remediation of contaminated soil and disposal of organic waste; and a comparative analysis of the common modes of applied smoldering beyond the lab scale. As a technically effective and energy-efficient emerging technology, the prospects of smoldering as a robust treatment process in environmental pollution cleanup are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134667DOI Listing

Publication Analysis

Top Keywords

soil disposal
12
organic waste
12
applied smoldering
12
smoldering
10
remediation contaminated
8
contaminated soil
8
disposal organic
8
smoldering systems
8
key reaction
8
reaction characteristics
8

Similar Publications

Transient electronics for sustainability: Emerging technologies and future directions.

Beilstein J Nanotechnol

September 2025

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea.

Transient electronics are emerging as a promising class of devices designed to disappear after a defined operational period, addressing growing concerns over sustainability and long-term biocompatibility. Built from biodegradable materials that undergo hydrolysis or enzymatic degradation, these systems are particularly well suited for temporary implantable applications, such as neural monitors, wireless stimulators, and drug delivery vehicles, as well as environmentally benign electronics for soil or aquatic disposal. Despite their potential, key challenges remain in expanding the material set for diverse functionalities, achieving high-density integration for advanced operations, and enabling precise lifetime control through strategies such as protective encapsulation.

View Article and Find Full Text PDF

Restoring nature with microbes: bioremediation in the world's biodiversity hotspots.

Appl Environ Microbiol

September 2025

Department of Biological Sciences, Centro de Investigaciones Microbiológicas, Universidad de los Andes, Bogotá, Colombia.

Megadiverse countries, which collectively harbor over 70% of the planet's terrestrial biodiversity, play a crucial role in global conservation efforts. However, many of these nations, primarily in the developing world, face significant environmental challenges that threaten biodiversity, including pollution, habitat loss, and climate change. Among these issues, pollution-driven by industrialization, agriculture, and improper waste disposal-has emerged as a critical concern, particularly for water and soil ecosystems.

View Article and Find Full Text PDF

Plastic-Microbial BioRemediation DB: A Curated Database for Multi-Omics Applications.

Environ Microbiol Rep

October 2025

Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.

Plastic pollution is a major environmental challenge, with millions of tonnes produced annually and accumulating in ecosystems, causing long-term harm. Conventional disposal methods, such as landfilling and incineration, are often inadequate, emphasising the need for sustainable solutions like bioremediation. However, the bacterial biodiversity involved in plastic biodegradation remains poorly understood.

View Article and Find Full Text PDF

Tightly bound tritium (TBT) in soil is poorly studied in terms of its bioavailability. This paper presents the results of long-term studies (2018 through 2023) on the bioavailability of tightly bound tritium in soil. Field studies were conducted in the epicentral zones of the Semipalatinsk test site (STS), using dominant and subdominant species.

View Article and Find Full Text PDF

With the rapid development of industrialization in China, more and more industrial solid wastes (ISWs) are generated in industrial production processes. Under the pressure for safe disposals or utilization of ISWs as resources, and the demand for soil pollution remediation in China, there have been attempts to incorporate ISWs into agricultural land as soil amendments, while the environmental impacts of ISWs applied on agricultural land have aroused great concerns. This paper presents a comprehensive overview regarding the environmental risks from impacts of 7 types of ISWs (including blast furnace slag, steel slag, magnesium slag, coal-fired flue gas desulfurization gypsum, phosphogypsum, calcium carbide slag, and ammonia-soda residue) applied on agricultural land.

View Article and Find Full Text PDF