Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is a significant health concern with limited treatment options. AXL, a receptor tyrosine kinase activated by the GAS6 ligand, promotes MASH through activation of hepatic stellate cells and inflammatory macrophages. This study identified cell subsets affected by MASH progression and the effect of AXL inhibition.

Methods: Mice were fed chow or different fat-enriched diets to induce MASH, and small molecule AXL kinase inhibition with bemcentinib was evaluated. Gene expression was measured by qPCR. Time-of-flight mass cytometry (CyTOF) used single cells from dissociated livers, acquired on the Fluidigm Helios, and cell populations were studied using machine learning.

Results: In mice fed different fat-enriched diets, liver steatosis alone was insufficient to elevate plasma soluble AXL (sAXL) levels. However, in conjunction with inflammation, sAXL increases, serving as an early indicator of steatohepatitis progression. Bemcentinib, an AXL inhibitor, effectively reduced proinflammatory responses in MASH models, even before fibrosis appearance. Utilizing CyTOF analysis, we detected a decreased population of Kupffer cells during MASH while promoting infiltration of monocytes/macrophages and CD8 T cells. Bemcentinib partially restored Kupffer cells, reduced pDCs and GzmB NK cells, and increased GzmBCD8 T cells and LSECs. Additionally, AXL inhibition enhanced a subtype of GzmBCD8 tissue-resident memory T cells characterized by CX3CR1 expression. Furthermore, bemcentinib altered the transcriptomic landscape associated with MASH progression, particularly in TLR signaling and inflammatory response, exhibiting differential cytokine expression in the plasma, consistent with liver repair and decreased inflammation.

Conclusion: Our findings highlight sAXL as a biomarker for monitoring MASH progression and demonstrate that AXL targeting shifted liver macrophages and CD8 T-cell subsets away from an inflammatory phenotype toward fibrotic resolution and organ healing, presenting a promising strategy for MASH treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137289PMC
http://dx.doi.org/10.3389/fimmu.2024.1400553DOI Listing

Publication Analysis

Top Keywords

mash progression
12
mash
10
cell populations
8
axl
8
axl kinase
8
cells
8
mice fed
8
fat-enriched diets
8
kupffer cells
8
dynamic changes
4

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.

View Article and Find Full Text PDF

Monitoring ferroptosis in vivo: Iron-driven volatile oxidized lipids as breath biomarkers.

Redox Biol

September 2025

Multi-Omics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Human Biology Microbiome Quantum Research Center, Keio University School of Medicine, Tokyo, Japan. Electronic address:

Ferroptosis, an iron-dependent cell death mechanism characterized by excessive lipid peroxidation, has been implicated in numerous human diseases and organ pathologies. However, current detection methods necessitate invasive tissue sampling to assess lipid peroxidation, making noninvasive detection of ferroptosis in human subjects extremely challenging. In this study, we employed oxidative volatolomics to comprehensively characterize the volatile oxidized lipids (VOLs) produced during ferroptosis.

View Article and Find Full Text PDF

The Proteomic Profiling of Circulating Extracellular Vesicles of Western Diet and Chemical-Induced Murine MASH Model.

Kaohsiung J Med Sci

September 2025

Hepatitis Research Center, College of Medicine; Center for Metabolic Disorders and Obesity; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent chronic liver condition that can progress to severe complications such as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing burden, there are no reliable non-invasive biomarkers for tracking disease progression. In this study, we established a murine MASLD/MASH model using a high-fat diet and chemical (CCl) induction.

View Article and Find Full Text PDF

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

Background: The Middle East and North Africa (MENA) region is undergoing demographic shifts potentially increasing metabolic dysfunction-associated steatotic liver disease (MASLD) and its complications. We assessed MASLD prevalence and liver disease burden from 2010 to 2021.

Methods: Data from Global Burden of Disease (GBD), United Nations Population Division and NCD Risk Factor Collaboration covering 21 MENA countries were used for annual percent change (APC) trends per Joinpoint regression.

View Article and Find Full Text PDF