A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Gloss Prior Guided Visual Feature Learning for Continuous Sign Language Recognition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Continuous sign language recognition (CSLR) is to recognize the glosses in a sign language video. Enhancing the generalization ability of CSLR's visual feature extractor is a worthy area of investigation. In this paper, we model glosses as priors that help to learn more generalizable visual features. Specifically, the signer-invariant gloss feature is extracted by a pre-trained gloss BERT model. Then we design a gloss prior guidance network (GPGN). It contains a novel parallel densely-connected temporal feature extraction (PDC-TFE) module for multi-resolution visual feature extraction. The PDC-TFE captures the complex temporal patterns of the glosses. The pre-trained gloss feature guides the visual feature learning through a cross-modality matching loss. We propose to formulate the cross-modality feature matching into a regularized optimal transport problem, it can be efficiently solved by a variant of the Sinkhorn algorithm. The GPGN parameters are learned by optimizing a weighted sum of the cross-modality matching loss and CTC loss. The experiment results on German and Chinese sign language benchmarks demonstrate that the proposed GPGN achieves competitive performance. The ablation study verifies the effectiveness of several critical components of the GPGN. Furthermore, the proposed pre-trained gloss BERT model and cross-modality matching can be seamlessly integrated into other RGB-cue-based CSLR methods as plug-and-play formulations to enhance the generalization ability of the visual feature extractor.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3404869DOI Listing

Publication Analysis

Top Keywords

visual feature
20
sign language
16
pre-trained gloss
12
cross-modality matching
12
feature
9
gloss prior
8
feature learning
8
continuous sign
8
language recognition
8
generalization ability
8

Similar Publications