Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To investigate air pollution in the kerbside environment and its associated human health risks, a study was conducted in Lanzhou during December 2018, as well as in April, June, and September 2019. The research aimed to characterize the composition of PM and PM, including elements, ions, and carbonaceous components, at both rooftop and kerbside locations. Additionally, source apportionment and health risk assessment were conducted. The results showed that the average mass concentrations of PM on the rooftop were 176.01 ± 83.23 μg/m, and for PM, it was 94.07 ± 64.89 μg/m. The PM and PM levels at the kerbside are 2.21 times and 1.79 times, respectively, greater than those on the rooftop. Moreover, the concentrations of elements, ions, and carbonaceous components in kerbside PM were higher than those at the rooftop location. Chemical mass closure analysis identified various sources, including organic matter, mineral dust, secondary ions, other ions, elements, and other components. In comparison to rooftop particulate matter (PM), mineral dust makes a more substantial contribution to kerbside PM. Secondary ions show an opposite trend, making a greater contribution to rooftop PM. The contribution of organic components within PM of the same particle size remains relatively consistent. The outcome of the health risk assessment indicates that Co, Cd, and As in PM within the kerbside and rooftop environments do not pose a notable carcinogenic risk. However, Al and Mn do present specific non-carcinogenic risks, particularly in the kerbside environment. Furthermore, children experience elevated non-carcinogenic risk compared to adults. These findings can serve as a scientific foundation for formulating policies within the local health department.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33649-4 | DOI Listing |