Real-time in situ detection of petroleum hydrocarbon pollution in soils via a novel optical methodology.

Spectrochim Acta A Mol Biomol Spectrosc

Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, PR China. Electronic address:

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Petroleum hydrocarbon (PHC) contamination in soils is considered one of the most serious problems currently, of which the detection and identification is a fairly significant but challenging work. Conventional methods to do such work usually need complex sample pretreatment, consume much time and fail to do the in-situ detection. This paper set out to create a novel systematic methodology to realize the goals accurately and efficiently. Based on laser-induced breakdown spectroscopy (LIBS) and self-improved machine learning methods, the innovative methodology only uses extremely simple devices to do the real-time in situ detection and identification work and even realize the quantitative analysis of pollution level accurately. In the study, clean soils mixed with petroleum were served as polluted samples, clean soils to be the blank group for comparison. Based on the elemental information from the spectra obtained by LIBS, machine learning methods were improved and helped optimized the algorithm to identify the PHC polluted soil samples for the first time. Furthermore, a novel model was designed to perform the quantitative analysis of the concentration of PHC pollution in soils, which can be applied to detect the degree of PHC contamination in soils accurately. Finally, the harmful volatile component of the PHC polluted soils was also successfully and identified despite its extremely minimal content in the air. The newly-designed methodology is novel and efficient, which has extensive application prospect in the real-time in situ detection of petroleum hydrocarbon pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124526DOI Listing

Publication Analysis

Top Keywords

real-time situ
12
situ detection
12
petroleum hydrocarbon
12
detection petroleum
8
hydrocarbon pollution
8
pollution soils
8
phc contamination
8
contamination soils
8
detection identification
8
machine learning
8

Similar Publications

HPV-associated squamous cell carcinoma in situ arising from urethral caruncle: A case of the unusual occurrence in the common urogenital lesion.

Int J Surg Case Rep

August 2025

Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea. Electronic address:

Introduction And Importance: Urethral caruncle is one of the most prevalent urethral inflammatory disease in postmenopausal females. Although urethral caruncle is neither neoplastic nor preneoplastic, there have been rare reports of malignant neoplasm arising from them. Furthermore, none of them revealed association between urethral caruncle lesion and HPV (human papilloma virus) infection.

View Article and Find Full Text PDF

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

The long-term visualization of intracellular Fe dynamics and lysosomal activity is crucial for investigating the physiological roles and functions of lysosomes during the growth of organisms. The lysosome-targeted fluorescent probe (RBH-EdC), derived from rhodamine-nucleoside conjugates, demonstrates a sophisticated dual-activation design: one is Fe⁺ response, triggering spirolactam ring-opening to form xanthine structures, resulting in ≥ 1000-fold fluorescence enhancement with visible colorimetric transition (colorless→pink). Another is pH sensitivity, demonstrating protonation-dependent fluorescence amplification at the dC at site N3 (pK= 2.

View Article and Find Full Text PDF

Magnetic Targeting of AAV Gene Therapy for Inner Ear Following Systemic Delivery: Preliminary Findings and Transduction Pattern in Rat Cochlea.

J Assoc Res Otolaryngol

September 2025

Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON, M4N 3M5, Canada.

Purpose: Delivery of therapeutics to the inner ear is complicated by their inaccessible location and the presence of the blood-labyrinth barrier that restricts most blood-borne compounds from entering the inner ear. This study addresses the challenge of optimal delivery in treating inner ear disease, focusing on magnetic targeting gene therapy using adeno-associated virus (AAV).

Methods: The investigation explores three AAV serotypes (AAV2 Quad Mut, AAV2 pANC80L65, and AAV9 PHP.

View Article and Find Full Text PDF