Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear.

Methods: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269).

Results: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10) and CSF p-tau levels (P = 4.38 × 10).

Discussion: These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels.

Highlights: Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247664PMC
http://dx.doi.org/10.1002/alz.13848DOI Listing

Publication Analysis

Top Keywords

amyloid tau
20
alzheimer's disease
12
gpx3 levels
12
tau positivity
12
gpx3
10
tnip1 locus
8
cerebrospinal fluid
8
csf
8
fluid csf
8
glutathione peroxidase
8

Similar Publications

Objective: The objective of this study was to determine the predictive value of amyloid-positron emission tomography (PET) versus the plasma ratio of phosphorylated tau at threonine 217 (p-tau217) to non-phosphorylated tau217 (%p-tau217) for tau-PET transitions (T- to T+). The added value of combining plasma amyloid-β 42 and amyloid-β 40 (Aβ42/40) and %p-tau217 into an amyloid probability score (APS2) was also assessed.

Methods: Mayo Clinic Study of Aging (MCSA) participants had plasma markers measured at via mass spectrometry (MS), an amyloid-PET scan, and a tau-PET (meta-temporal region of interest [ROI]) negative scan (standardized uptake value ratio [SUVR] <1.

View Article and Find Full Text PDF

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Circadian rhythms are associated with higher amyloid-β and tau and poorer cognition in older adults.

Brain Commun

September 2025

Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.

Several studies implicate circadian rhythm disturbances in Alzheimer's disease. However, very little is known about how circadian rhythms are associated with Alzheimer's pathological biomarkers in older adults at early stages of the disease, and how these relationships map onto cognition. This cross-sectional study used 24-h accelerometry data to investigate the relationships between circadian rhythms, amyloid-β (Aβ), tau, and cognition in 68 older adults with objective early cognitive impairment.

View Article and Find Full Text PDF

Targeting protein misfolding in Alzheimer's disease: The emerging role of molecular chaperones.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.

View Article and Find Full Text PDF

The "biological view" of Alzheimer's disease (AD) focuses on the role of plaques and tangles and excludes syndromes from the disease definition. However, cognitive syndromes are fundamental aspects of AD and are the ultimate target of treatments. Accordingly, the study of cognitive syndromes should remain a major goal of AD research.

View Article and Find Full Text PDF