Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370807PMC
http://dx.doi.org/10.1093/brain/awae173DOI Listing

Publication Analysis

Top Keywords

ventral tegmental
12
tegmental area
12
deep brain
12
brain stimulation
12
neural circuits
8
stimulation neuropsychiatric
8
neuropsychiatric diseases
8
establishing connectivity
4
connectivity microdissections
4
microdissections midbrain
4

Similar Publications

Engineered VTA dopaminergic neurons offer a new path to treating depression.

Cell Stem Cell

September 2025

Department of Psychology, Sapienza University, via dei Marsi 78, 00185 Rome, Italy; IRCCS San Raffaele, via di Val Cannuta 247, 00166 Rome, Italy. Electronic address:

Dysfunction of A10 midbrain dopaminergic (mDA) neurons is linked to psychiatric disorders, such as depression. In this issue, Yan et al. present an efficient method for differentiating human pluripotent stem cells into A10-like mDA neurons.

View Article and Find Full Text PDF

Whole-brain mapping of afferent and efferent connections of lateral hypothalamic orexinergic neurons in mice.

Brain Res

September 2025

Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou 510632, China. Electronic address:

Orexin (Orx) is a vital peptide neurotransmitter essential for regulating feeding, sleep-wake cycles, and reward-seeking behavior. Orexinergic neurons are predominantly located in the lateral hypothalamus (LH). However, the precise neural connectivity of these neurons across the brain remains insufficiently characterized.

View Article and Find Full Text PDF

Reward-predictive cues trigger dopamine release in the nucleus accumbens core (NAc). This signal has long been thought to mediate motivation. However, understanding of dopamine function is complicated by the fact that reward cues not only motivate reward pursuit, but also enable the reward predictions that shape how reward is pursued.

View Article and Find Full Text PDF

The ability to adapt to a dynamic world relies on detecting, learning, and responding to environmental changes. The detection of novelty serves as a critical indicator of such changes, priming mechanisms to detect and respond to goal-relevant information. However, neural regions that support novelty detection (hippocampus) and goal-directed behavior (dopaminergic midbrain [VTA] and prefrontal cortex [PFC]) have yet to be described as a sequential process that unfolds over time.

View Article and Find Full Text PDF

Association between brain iron deposition and pure apathy in Parkinson's disease: a cross-sectional quantitative susceptibility mapping imaging study.

Quant Imaging Med Surg

September 2025

Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.

Background: Apathy, a decline in goal-directed motivated behavior, is a common non-motor symptom (NMS) in Parkinson's disease (PD). Previous studies have suggested that PD patients with apathy exhibit increased iron levels in the cerebrospinal fluid (CSF) and the iron levels are positively correlated with the severity of apathy, indicating that apathy in PD may be related with brain iron accumulation. Specifically, quantitative susceptibility mapping (QSM), an emerging brain magnetic resonance imaging (MRI) technique, can be used to sensitively detect the iron deposition in the brain , to reflect the neurodegeneration processes.

View Article and Find Full Text PDF