AnoChem: Prediction of chemical structural abnormalities based on machine learning models.

Comput Struct Biotechnol J

Artificial Intelligence Laboratory, Oncocross Co., Ltd., Saechang-ro, Mapo-gu, Seoul 04168, Republic of Korea.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

drug design aims to rationally discover novel and potent compounds while reducing experimental costs during the drug development stage. Despite the numerous generative models that have been developed, few successful cases of drug design utilizing generative models have been reported. One of the most common challenges is designing compounds that are not synthesizable or realistic. Therefore, methods capable of accurately assessing the chemical structures proposed by generative models for drug design are needed. In this study, we present AnoChem, a computational framework based on deep learning designed to assess the likelihood of a generated molecule being real. AnoChem achieves an area under the receiver operating characteristic curve score of 0.900 for distinguishing between real and generated molecules. We utilized AnoChem to evaluate and compare the performances of several generative models, using other metrics, namely SAscore and Fréschet ChemNet distance (FCD). AnoChem demonstrates a strong correlation with these metrics, validating its effectiveness as a reliable tool for assessing generative models. The source code for AnoChem is available at https://github.com/CSB-L/AnoChem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130677PMC
http://dx.doi.org/10.1016/j.csbj.2024.05.017DOI Listing

Publication Analysis

Top Keywords

generative models
20
drug design
12
models drug
8
anochem
6
models
6
generative
5
anochem prediction
4
prediction chemical
4
chemical structural
4
structural abnormalities
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Bioactive Coatings for Cardiovascular Stents: Modulating Immune Response for Enhanced Performance.

ACS Biomater Sci Eng

September 2025

University Center for Research & Development (UCRD), Chandigarh University, NH-05 Chandigarh-Ludhiana Highway, Mohali 140413, Punjab, India.

Cardiovascular disorders remain a leading cause of death worldwide, and the use of contemporary stents is paving the way for a profound shift in the field of cardiology. In the surgical process postimplantation, the graft or stent and host-immune interaction play a significant role in the healing process, thus it is a major challenge in healthcare. To address these challenges, recent advancements have introduced bioactive coatings with specialized modifications in stents to enhance their interaction with surrounding environment.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) represents a significant public health burden in developing countries, where access to early diagnosis, comprehensive care, and research infrastructure is limited. This article synthesizes the insights generated during a Fireside Chat convened by members of the Latin American Cooperative Oncology Group (LACOG)-Head and Neck and the Brazilian Group of Head and Neck Cancer (GBCP), with the participation of international expert Professor Hisham Mehanna. The discussion addressed key challenges and opportunities in clinical and translational research within resource-constrained settings.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF