Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unenhanced CT scans exhibit high specificity in detecting moderate-to-severe hepatic steatosis. Even though many CTs are scanned from health screening and various diagnostic contexts, their potential for hepatic steatosis detection has largely remained unexplored. The accuracy of previous methodologies has been limited by the inclusion of non-parenchymal liver regions. To overcome this limitation, we present a novel deep-learning (DL) based method tailored for the automatic selection of parenchymal portions in CT images. This innovative method automatically delineates circular regions for effectively detecting hepatic steatosis. We use 1,014 multinational CT images to develop a DL model for segmenting liver and selecting the parenchymal regions. The results demonstrate outstanding performance in both tasks. By excluding non-parenchymal portions, our DL-based method surpasses previous limitations, achieving radiologist-level accuracy in liver attenuation measurements and hepatic steatosis detection. To ensure the reproducibility, we have openly shared 1014 annotated CT images and the DL system codes. Our novel research contributes to the refinement the automated detection methodologies of hepatic steatosis on CT images, enhancing the accuracy and efficiency of healthcare screening processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127985 | PMC |
http://dx.doi.org/10.1038/s41598-024-62887-2 | DOI Listing |