Biological Response Following the Systemic Injection of PEG-PAMAM-Rhodamine Conjugates in Zebrafish.

Pharmaceutics

i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG-PAMAM-Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG-PAMAM-Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG-PAMAM-Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125904PMC
http://dx.doi.org/10.3390/pharmaceutics16050608DOI Listing

Publication Analysis

Top Keywords

systemic injection
8
systemic delivery
8
biological response
4
systemic
4
response systemic
4
injection peg-pamam-rhodamine
4
peg-pamam-rhodamine conjugates
4
conjugates zebrafish
4
zebrafish numerous
4
numerous therapeutic
4

Similar Publications

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF

pH-responsive activation of Tet-On inducible CAR-T cells enables spatially selective treatment of targeted solid tumors at reduced safety risk.

Natl Sci Rev

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.

Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.

View Article and Find Full Text PDF

Dermal Filler Use in Patients Undergoing Chemotherapy and Radiation Therapy.

JMIR Dermatol

September 2025

College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Road, Parker, CO, 80112, United States, 1 9253236431.

Dermal fillers have gained increasing popularity for their ability to enhance facial symmetry, restore volume, and improve skin texture. However, their use in patients with cancer undergoing active chemotherapy and radiation therapy poses unique challenges, as these treatments can alter both the safety profile and efficacy of filler procedures. Chemotherapy can interfere with normal wound healing and immune responses, warranting a more cautious and individualized approach when considering dermal fillers in this population.

View Article and Find Full Text PDF

Clinical Doses of Gadodiamide Have No Damaging Effects on Cochlear Tissue In Vitro and In Vivo.

Neurotoxicology

September 2025

Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:

Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.

View Article and Find Full Text PDF

Bertolotti Syndrome in the Pediatric Population: A Literature Review and Management Algorithm.

J Am Acad Orthop Surg Glob Res Rev

September 2025

From the Harvard Medical School, Boston, MA (Gabriel, Hines, and Prabhat); the Lenox Hill Hospital, New York, NY (Dr. Ang); and the Boston Children's Hospital, Department of Orthopedic Surgery, Boston, MA (Dr. Liu and Dr. Hogue).

Purpose: The purpose of this study was to develop a comprehensive step-wise management algorithm for Bertolotti syndrome in the pediatric population by conducting a systematic review of the current literature regarding the diagnostic evaluation, nonsurgical and surgical treatment, and outcomes.

Methods: A systematic review of the literature was conducted using PubMed to identify studies focused on the management of Bertolotti syndrome in the pediatric population. Data extraction of clinical presentation, management strategies, imaging, and outcomes was completed.

View Article and Find Full Text PDF