Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-invasive brain stimulation (NIBS) approaches have seen a rise in utilization in both clinical and basic neuroscience in recent years. Here, we concentrate on the two methods that have received the greatest research: transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS). Both approaches have yielded pertinent data regarding the cortical excitability in subjects in good health as well as pertinent advancements in the management of various clinical disorders. NIBS is a helpful method for comprehending the cortical control of the ANS. Previous research has shown that there are notable changes in muscular sympathetic nerve activity when the motor cortex is modulated. Furthermore, in NIBS investigations, the ANS has been employed more frequently as an outcome measure to comprehend the overall impacts of these methods, including their safety profile. Though there is ample proof that brain stimulation has autonomic effects on animals, new research on the connection between NIBS and the ANS has produced contradictory findings. In order to better understand NIBS processes and ANS function, it is crucial to take into account the reciprocal relationship that exists between central modulation and ANS function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117478PMC
http://dx.doi.org/10.3390/biomedicines12050972DOI Listing

Publication Analysis

Top Keywords

brain stimulation
12
non-invasive brain
8
stimulation autonomic
8
ans function
8
stimulation
5
nibs
5
ans
5
relationship non-invasive
4
autonomic nervous
4
nervous system
4

Similar Publications

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Individual alpha frequency tACS modifies the detection of space-time optical illusion.

Exp Brain Res

September 2025

Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.

Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.

View Article and Find Full Text PDF

Brain Activity During Electrical Stimulation of Visual-Motor Illusion with Enhanced Joint Motion Intensity.

J Mot Behav

September 2025

Department Department of Physical Therapy, Faculty of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.

Visual-motor illusion (VMI) is a kinesthetic illusion produced by viewing an image showing joint motion. VMI with enhanced joint movement intensity (power-VMI; P-VMI) is expected to activate a wide range of motor association brain regions, and when combined with electrical stimulation that activates the motor sensory cortex, further activation of brain activity can be expected. This study aimed to verify the effectiveness of VMI using functional near-infrared spectroscopy to confirm brain activity during combined P-VMI and electrical stimulation.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF