98%
921
2 minutes
20
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119846 | PMC |
http://dx.doi.org/10.3390/cells13100820 | DOI Listing |
J Alzheimers Dis
September 2025
Paula Costa-Urrutia Medical Affairs, Terumo BCT, Edificio Think MVD, Montevideo, Uruguay.
BackgroundTherapeutic plasma exchange (TPE) with albumin replacement has emerged as a potential treatment for Alzheimer's disease (AD). The AMBAR trial showed that TPE could slow cognitive and functional decline, along with changes in core and inflammatory biomarkers in cerebrospinal fluid.ObjectiveTo evaluate the safety and effectiveness of TPE in a real-world setting in Argentina.
View Article and Find Full Text PDFCereb Cortex
August 2025
Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States.
Statistical Parametric Mapping (SPM) adheres to rigorous methodological standards, including: spatial normalization, inter-subject averaging, voxel-wise contrasts, and coordinate reporting. This rigor ensures that a thematically diverse literature is amenable to meta-analysis. BrainMap is a community database (www.
View Article and Find Full Text PDFInt J Surg
September 2025
The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
Neurochem Res
September 2025
Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.
View Article and Find Full Text PDFCurr Med Sci
September 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.
Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.