Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scleractinian corals, essential ecosystem engineers that form the base of coral reef ecosystems, have faced unprecedented mortality in recent decades due to climate change-related stressors, including disease outbreaks. Despite this emergent threat to corals, many questions still remain regarding mechanisms underlying observed variation in disease susceptibility. Recent data suggest at least some degree of variation in disease response may be linked to variability in the relationship between host corals and their algal photosymbionts (Family Symbiodiniaceae). Still, the nuances of connections between symbiosis and immunity in cnidarians, including scleractinian corals, remain poorly understood. Here, we leveraged an emergent model species, the facultatively symbiotic, temperate, scleractinian coral Astrangia poculata, to investigate associations between symbiont density and both constitutive and induced immunity. We used a combination of controlled immune challenges with heat-inactivated pathogens and transcriptomic analyses. Our results demonstrate that A. poculata mounts a robust initial response to pathogenic stimuli that is highly similar to responses documented in tropical corals. We document positive associations between symbiont density and both constitutive and induced immune responses, in agreement with recent preliminary studies in A. poculata. A suite of immune genes, including those coding for antioxidant peroxiredoxin biosynthesis, are positively associated with symbiont density in A. poculata under constitutive conditions. Furthermore, variation in symbiont density is associated with distinct patterns of immune response; low symbiont density corals induce preventative immune mechanisms, whereas high symbiont density corals mobilize energetic resources to fuel humoral immune responses. In summary, our study reveals the need for more nuanced study of symbiosis-immune interplay across diverse scleractinian corals, preferably including quantitative energy budget analysis for full disentanglement of these complex associations and their effects on host pathogen susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icae036DOI Listing

Publication Analysis

Top Keywords

symbiont density
24
constitutive induced
12
scleractinian corals
12
induced immunity
8
facultatively symbiotic
8
coral astrangia
8
astrangia poculata
8
corals
8
variation disease
8
associations symbiont
8

Similar Publications

Fexinidazole and corallopyronin a target Wolbachia-infected sheath cells present in filarial nematodes.

PLoS Pathog

September 2025

Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California, United States of America.

The discovery of the endosymbiotic bacteria Wolbachia as an obligate symbiont of. filarial nematodes has led to antibiotic-based treatments for filarial diseases. While lab.

View Article and Find Full Text PDF

Sterile Insect Technique (SIT) has proven effective to reduce tsetse population density in large infected areas where animal African trypanosomosis (AAT) and human African trypanosomiasis (HAT) elimination was difficult to achieve. However, the decrease in mass production of insectary-reared tsetse and the limited but incomplete knowledge on symbiont-trypanosome interaction over time, impede large-scale use of SIT. We investigated the spatiotemporal changes in symbiont prevalence and symbiont-trypanosome interactions in wild tsetse of Sora-Mboum AAT focus in northern Cameroon, collected in 2019 and 2020, to provide insights into the mass production of refractory tsetse.

View Article and Find Full Text PDF

Background: In agricultural pests, both microbial pathogens and partners, that threaten their life and benefit them, respectively, face challenges from fungicides that are ubiquitous to control crop pathogens. However, an integrated understanding of the fungicide-impacts on pest microbial pathogens and partners, which in turn influence pest management outcomes, remains largely unexplored.

Results: We investigated the impacts of the most commonly used rice fungicides on an entomopathogenic fungus Cordyceps javanica, a biocontrol agent of rice pest Nilaparvata lugens, as well as the communities of bacteria and fungi within this pest.

View Article and Find Full Text PDF

Heat stress can disrupt acid-base homeostasis in reef-building corals and other tropical cnidarians, often leading to cellular acidosis that can undermine organismal function. Temperate cnidarians experience a high degree of seasonal temperature variability, leading us to hypothesize that temperate taxa have more thermally robust pH homeostasis than their tropical relatives. To test this, we investigated how elevated temperature affects intracellular pH and calcification in the temperate coral .

View Article and Find Full Text PDF

Pollution from synthetic polymers, particularly low-density polyethylene (LDPE), poses a significant environmental challenge due to its chemical stability and resistance to degradation. This study investigates an eco-biotechnological approach involving bacterial strains isolated from insect guts- LDPE-DB2 (from ) and LDPE-DB26 (from )-which demonstrate the ability to degrade LDPE, potentially through the action of lignin-modifying enzymes. These strains exhibited notable biofilm formation, enzymatic activity, and mechanical destabilization of LDPE.

View Article and Find Full Text PDF