Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Desiccation tolerance of pathogenic bacteria is one strategy for survival in harsh environments, which has been studied extensively. However, the subsequent survival behavior of desiccation-stressed bacterial pathogens has not been clarified in detail. Herein, we demonstrated that the effect of desiccation stress on the thermotolerance of O157:H7 in ground beef was limited, and its thermotolerance did not increase. O157:H7 was inoculated into a ground beef hamburger after exposure to desiccation stress. We combined a bacterial inactivation model with a heat transfer model to predict the survival kinetics of desiccation-stressed O157:H7 in a hamburger. The survival models were developed using the Weibull model for two-dimensional pouched thin beef patties (ca. 1 mm), ignoring the temperature gradient in the sample, and a three-dimensional thick beef patty (ca. 10 mm), considering the temperature gradient in the sample. The two-dimensional (2-D) and three-dimensional (3-D) models were subjected to stochastic variations of the estimated Weibull parameters obtained from 1,000 replicated bootstrapping based on isothermal experimental observations as uncertainties. Furthermore, the 3-D model incorporated temperature gradients in the sample calculated using the finite element method. The accuracies of both models were validated via experimental observations under non-isothermal conditions using 100 predictive simulations. The root mean squared errors in the log survival ratio of the 2-D and 3-D models for 100 simulations were 0.25-0.53 and 0.32-2.08, respectively, regardless of the desiccation stress duration (24 or 72 h). The developed approach will be useful for setting appropriate process control measures and quantitatively assessing food safety levels.IMPORTANCEAcquisition of desiccation stress tolerance in bacterial pathogens might increase thermotolerance as well and increase the risk of foodborne illnesses. If a desiccation-stressed pathogen enters a kneaded food product via cross-contamination from a food-contact surface and/or utensils, proper estimation of the internal temperature changes in the kneaded food during thermal processing is indispensable for predicting the survival kinetics of desiccation-stressed bacterial cells. Various survival kinetics prediction models that consider the uncertainty or variability of pathogenic bacteria during thermal processing have been developed. Furthermore, heat transfer processes in solid food can be estimated using finite element method software. The present study demonstrated that combining a heat transfer model with a bacterial inactivation model can predict the survival kinetics of desiccation-stressed bacteria in a ground meat sample, corresponding to the temperature gradient in a solid sample during thermal processing. Combining both modeling procedures would enable the estimation of appropriate bacterial survival kinetics in solid food.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218657PMC
http://dx.doi.org/10.1128/aem.00789-24DOI Listing

Publication Analysis

Top Keywords

survival kinetics
24
desiccation stress
20
heat transfer
12
kinetics desiccation-stressed
12
temperature gradient
12
thermal processing
12
survival
10
o157h7 hamburger
8
hamburger exposure
8
exposure desiccation
8

Similar Publications

Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.

View Article and Find Full Text PDF

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF

Characterization and Antimicrobial Efficacy of a Bacteriophage Targeting Multidrug-Resistant .

ACS Infect Dis

September 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.

View Article and Find Full Text PDF

The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.

View Article and Find Full Text PDF

Purpose: Replicating spinal cord injury (SCI) in large animals is necessary for evaluating translational therapeutics, yet there is currently no commercial, standardized device for inducing SCI. We present the fabrication and testing of a custom impactor device for producing repeatable contusion SCI in porcine models.

Methods: The device was built, and mechanical modeling was utilized for calibration.

View Article and Find Full Text PDF