Revealing the mechanism and function underlying pairwise temporal coupling in collective motion.

Nat Commun

Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coordinated motion in animal groups has predominantly been studied with a focus on spatial interactions, such as how individuals position and orient themselves relative to one another. Temporal aspects have, by contrast, received much less attention. Here, by studying pairwise interactions in juvenile zebrafish (Danio rerio)-including using immersive volumetric virtual reality (VR) with which we can directly test models of social interactions in situ-we reveal that there exists a rhythmic out-of-phase (i.e., an alternating) temporal coordination dynamic. We find that reciprocal (bi-directional) feedback is both necessary and sufficient to explain this emergent coupling. Beyond a mechanistic understanding, we find, both from VR experiments and analysis of freely swimming pairs, that temporal coordination considerably improves spatial responsiveness, such as to changes in the direction of motion of a partner. Our findings highlight the synergistic role of spatial and temporal coupling in facilitating effective communication between individuals on the move.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111445PMC
http://dx.doi.org/10.1038/s41467-024-48458-zDOI Listing

Publication Analysis

Top Keywords

temporal coupling
8
temporal coordination
8
temporal
5
revealing mechanism
4
mechanism function
4
function underlying
4
underlying pairwise
4
pairwise temporal
4
coupling collective
4
collective motion
4

Similar Publications

Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Uncovering nonlinear causal relationships and propagation dynamics of drought types in Xinjiang using convergent cross mapping.

J Environ Manage

September 2025

College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi, 830052, China. Electronic address:

Drought is one of the most destructive natural disasters globally. Understanding its propagation mechanisms and the causal relationships among different drought types is crucial for effective monitoring and mitigation. Using meteorological (SPI), hydrological (SRI), and agricultural (SSMI) drought indices from 1983 to 2023 in Xinjiang, this study employs the Convergent Cross Mapping (CCM) method to systematically quantify nonlinear causal relationships among the three drought types, revealing their temporal lag characteristics, spatial heterogeneity, and multiscale dynamics.

View Article and Find Full Text PDF

Background: Interprofessional Education (IPE) is widely recognized as essential for fostering collaborative healthcare practices and improving patient outcomes. Despite its acknowledged importance, there remains a notable scarcity of longitudinal research assessing medical students' readiness for IPE across distinct educational stages, particularly within diverse global contexts like Brazil.

Aim: This study sought to address this gap by longitudinally mapping and analyzing the evolution of medical students' readiness for interprofessional learning throughout their academic training at a Brazilian university.

View Article and Find Full Text PDF

Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).

View Article and Find Full Text PDF