Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CreE is a flavin-dependent monooxygenase (FMO) that catalyzes three sequential nitrogen oxidation reactions of L-aspartate to produce nitrosuccinate, contributing to the biosynthesis of the antimicrobial and antiproliferative nautral product, cremeomycin. This compound contains a highly reactive diazo functional group for which the reaction of CreE is essential to its formation. Nitro and diazo functional groups can serve as potent electrophiles, important in some challenging nucleophilic addition reactions. Formation of these reactive groups positions CreE as a promising candidate for biomedical and synthetic applications. Here, we present the catalytic mechanism of CreE and the identification of active site residues critical to binding L-aspartate, aiding in future enzyme engineering efforts. Steady-state analysis demonstrated that CreE is very specific for NADPH over NADH and performs a highly coupled reaction with L-aspartate. Analysis of the rapid-reaction kinetics showed that flavin reduction is very fast, along with the formation of the oxygenating species, the C4a-hydroperoxyflavin. The slowest step observed was the dehydration of the flavin. Structural analysis and site-directed mutagenesis implicated T65, R291, and R440 in the binding L-aspartate. The data presented describes the catalytic mechanism and the active site architecture of this unique FMO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400350DOI Listing

Publication Analysis

Top Keywords

active site
12
site residues
8
diazo functional
8
catalytic mechanism
8
binding l-aspartate
8
cree
6
l-aspartate
5
kinetic characterization
4
characterization identification
4
identification key
4

Similar Publications

Background: Emotion dysregulation is a central feature in trauma-associated disorders such as posttraumatic stress disorder (PTSD) and borderline personality disorder (BPD). However, it remains unclear whether emotion dysregulation is a transdiagnostic phenomenon closely linked to childhood trauma, or if disorder-specific alterations in emotion processing exist. Following a multimethodological approach, we aimed to assess and compare the reactivity to and regulation of emotions between patients with BPD and PTSD, as well as healthy controls, and identify associations with childhood trauma.

View Article and Find Full Text PDF

PAZ Domain Pivoting is the Rate-Limiting Step for Target DNA Recognition in the Middle Region of Argonaute.

J Chem Inf Model

September 2025

School of Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong─Shenzhen, Shenzhen, Guangdong 518172, China.

Argonaute (Ago) is a DNA-guided programmable endonuclease with emerging applications in genome engineering, yet the rate-determining dynamic mechanisms governing its transition from guide-target hybridization to catalytic activation remain unresolved. Here, we employ molecular dynamics simulations and the Traveling-salesman-based Automated Path Searching (TAPS) approach to dissect the target DNA recognition in the middle region (nt 9-12) of Ago. We designed two paths to tackle this problem: one assumed that coordination of the target DNA backbone occurs before base-pairing between the target and guide DNA; the other hypothesized a concerted transition without preferred order between backbone-coordination and base-pairing.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

Preparation of high-performance phenolic resin adhesives using demethylated lignin as substitutes for phenol.

Int J Biol Macromol

September 2025

Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China. Electronic address:

Traditional phenolic resin adhesives involve the use of petrochemical-based phenol, raising environmental and health concerns. In this study, lignin was demethylated to substitute for phenol and prepare a high-lignin-content adhesive with perfect shear strength performance. The hydroxyl content of demethylated lignin can reach up to 6.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Curcuma wenyujin was first recorded in the Tang Dynasty's Xinxiu Bencao and has been traditionally used to treat blood stasis syndrome. Its active component curdione exhibits antiplatelet effects, though its anticoagulant mechanisms remain unclear and require further investigation.

Aim Of The Study: To investigate the anticoagulant activity of curdione, identify potential targets through integrated screening, and elucidate the underlying mechanisms.

View Article and Find Full Text PDF