Single Dispersion of Fe(HO)-Based Polyoxometalate on Polymeric Carbon Nitride for Biomimetic CH Photooxidation.

Adv Mater

Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Direct methane conversion to value-added oxygenates under mild conditions with in-depth mechanism investigation has attracted wide interest. Inspired by methane monooxygenase, the KNaFe(HO){[γ-SiWOFe(HO)]}·25HO polyoxometalate (Fe-POM) with well-defined Fe(HO) sites is synthesized to clarify the key role of Fe species and their microenvironment toward CH photooxidation. The Fe-POM can efficiently drive the conversion of CH to HCOOH with a yield of 1570.0 µmol g and 95.8% selectivity at ambient conditions, much superior to that of [Fe(HO)SiWO] with Fe(HO) active site, [FeSiWO(OH)] and [PWOFe(OH)(HO)] with multinuclear Fe-OH-Fe active sites. Single-dispersion of Fe-POM on polymeric carbon nitride (PCN) is facilely achieved to provide single-cluster functionalized PCN with well-defined Fe(HO) site, the HCOOH yield can be improved to 5981.3 µmol g . Systemic investigations demonstrate that the (WO)-Fe(HO) can supply Fe═O active center for C-H activation via forming (WO)-Fe-O···CH intermediate, similar to that for CH oxidation in the monooxygenase. This work highlights a promising and facile strategy for single dispersion of ≈1-2 Å metal center with precise coordination microenvironment by uniformly anchoring nanoscale molecular clusters, which provides a well-defined model for in-depth mechanism research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202403101DOI Listing

Publication Analysis

Top Keywords

single dispersion
8
polymeric carbon
8
carbon nitride
8
in-depth mechanism
8
well-defined feho
8
hcooh yield
8
dispersion feho-based
4
feho-based polyoxometalate
4
polyoxometalate polymeric
4
nitride biomimetic
4

Similar Publications

We investigate the quasiparticles of a single nodal ring semimetal SrAs_{3} through axis-resolved magneto-optical measurements. We observe three types of Landau levels scaling as ϵ∼sqrt[B], ϵ∼B^{2/3}, and ϵ∼B that correspond to Dirac, semi-Dirac, and classical fermions, respectively. Through theoretical analysis, we identify the distinct origins of these three types of fermions present within the nodal ring.

View Article and Find Full Text PDF

Low-Dimensional Semiconducting Silver (Germanium, Tin) Polyphosphides - Incommensurately Modulated Derivates of the HgPbP Structure Type.

Inorg Chem

September 2025

Synthesis and Characterization of Innovative Materials, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. München 85748, Germany.

Semiconductors with one-dimensional (1D) substructures are promising for next-generation optical and electronic devices due to their directional transport and flexibility. Representatives of this class include HgPbP-type materials. This study investigates the related semiconductors AgGeP and AgSnP.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

On use of adaptive cluster sampling for variance estimation.

J Appl Stat

February 2025

Department of Mathematics & Statistics, International Islamic University, Islamabad, Pakistan.

Adaptive cluster sampling is particularly helpful whenever the target population is unique, dispersed unevenly, concealed or difficult to find. In the current investigation, under an adaptive cluster sampling approach, we propose a ratio-product-logarithmic type estimator employing a single auxiliary variable for the estimation of finite population variance. The bias and mean square error of the proposed estimator are developed by using simulation as well as real data sets.

View Article and Find Full Text PDF

Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.

View Article and Find Full Text PDF