Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Implant-related osteomyelitis is a formidable hurdle in the clinical setting and is characterized by inflammation, infection, and consequential bone destruction. Therefore, effective reactive oxygen species (ROS) scavenging, bacterial killing, and subsequent bone tissue repair are urgently needed for the treatment of difficult-to-heal osteomyelitis. Herein, we utilized the eddy-thermal effect of magnesium (Mg) implants under an alternating magnetic field (AMF) for the controlled release of H gas and ions (OH and Mg) for the treatment of osteomyelitis. H released by Mg rods under AMFs effectively scavenged cytotoxic ROS, exhibiting anti-inflammatory effects and consequently disrupting the environment of bacterial infections. In addition, the OH hindered the energy metabolism of bacteria by effectively neutralizing protons within the microenvironment. Moreover, H impaired the permeability of bacterial membranes and expedited the damage induced by OH. This synergistic AMF-induced H and proton depletion treatment approach not only killed both gram-negative and gram-positive bacteria but also effectively treated bacterial infections (abscesses and osteomyelitis). Moreover, Mg released from the Mg rods enhanced and accelerated the process of bone osteogenesis. Overall, our work cleverly exploited the eddy-thermal effect and chemical activity of Mg implants under AMFs, aiming to eliminate the inflammatory environment and combat bacterial infections by the simultaneous release of H, OH, and Mg, thereby facilitating tissue regeneration. This therapeutic strategy achieved multiple benefits in one, thus presenting a promising avenue for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103218PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.05.010DOI Listing

Publication Analysis

Top Keywords

bacterial infections
12
magnesium implants
8
implants alternating
8
alternating magnetic
8
proton depletion
8
tissue repair
8
osteomyelitis released
8
released rods
8
bacteria effectively
8
bacterial
5

Similar Publications

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Oligochitosan-Ameliorated Gut Microbiome and Metabolic Homeostasis in Hybrid Groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) Infected With Vibrio harveyi.

J Fish Dis

September 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong

Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.

View Article and Find Full Text PDF

Listeria monocytogenes is a saprophytic bacterium and a foodborne pathogen of humans and animals. Little is known about its distribution and genetic diversity across different environments within the same geographical region. We conducted a large-scale longitudinal study in southeastern Spain monitoring Listeria spp.

View Article and Find Full Text PDF

Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.

Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.

View Article and Find Full Text PDF