98%
921
2 minutes
20
Introduction: Phloroglucinol may be able to improve embryo transfer outcomes. We aimed to systematically evaluate the effects of phloroglucinol on embryo transfer outcomes.
Methods: The databases searched were PubMed, Ovid MEDLINE, Web of Science, Wanfang, CQVIP, China National Knowledge Infrastructure, and
Results: Seventeen articles reporting 5,953 cycles were included. Biochemical pregnancy rate (OR = 1.58, 95% CI = 1.20-2.08, I2 = 71%), clinical pregnancy rate (OR = 1.69, 95% CI = 1.35-2.10, I2 = 64%), and live birth rate (OR = 1.45, 95% CI = 1.23-1.71, I2 = 36%) were improved by phloroglucinol. Less miscarriage (OR = 0.46, 95% CI = 0.35-0.60, I2 = 0%), less ectopic pregnancy (OR = 0.45, 95% CI = 0.28-0.72, I2 = 0%), higher implantation rate (OR = 1.45, 95% CI = 1.24-1.71, I2 = 62%) but more multiple pregnancy rate (OR = 1.48, 95% CI = 1.13-1.94, I2 = 0%) were induced by phloroglucinol. Endometrial peristaltic waves were improved by phloroglucinol (OR = 22.87, 95% CI = 5.52-94.74, I2 = 72%).
Conclusion: Phloroglucinol may improve the outcomes of embryo transfer, including biochemical pregnancy, clinical pregnancy, and live birth rates. Further studies are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000539340 | DOI Listing |
J Assist Reprod Genet
September 2025
Bahçeci Fulya IVF Center, Infertility Clinic, Istanbul, Turkey.
Purpose: To assess the intra-individual variability of serum progesterone (P) levels on embryo transfer (ET) day, when the same dose of intramuscular progesterone (IM-P) was used in two consecutive hormone replacement therapy (HRT) frozen embryo transfer (FET) cycles.
Methods: A total of 75 patients undergoing two consecutive HRT-FET cycles in one year performed at Bahceci Ankara IVF Center between November 2019 and February 2022 were retrospectively analyzed. Serum P levels were measured at the 117th-119th hours of support by a single laboratory.
Anim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDFEquine Vet J
September 2025
Sharjah Equine Hospital, Sharjah, UAE.
Background: Vitrified embryos ≤300 μm give better pregnancy rates following warming and transfer than larger ones. Embryo recovery undertaken close to when the embryo enters the uterus (Day 6-6.5) helps in the recovery of embryos ≤300 μm.
View Article and Find Full Text PDFPLoS One
September 2025
Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.
View Article and Find Full Text PDFReprod Domest Anim
September 2025
National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.
View Article and Find Full Text PDF