Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the time scale of ps-µs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of µs-ms, corresponding to large-scale protein motions, is inaccessible to those methods. To extend SDSL-EPR to the longer time domain, the perturbation method of pressure-jump relaxation is implemented. Here, we describe a complete high-pressure EPR system at Q-band for both static pressure and millisecond-timescale pressure-jump measurements on spin-labeled proteins. The instrument enables pressure jumps both up and down from any holding pressure, ranging from atmospheric pressure to the maximum pressure capacity of the system components (~3500 bar). To demonstrate the utility of the system, we characterize a local folding-unfolding equilibrium of T4 lysozyme. The results illustrate the ability of the system to measure thermodynamic and kinetic parameters of protein conformational exchange on the millisecond timescale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100676PMC
http://dx.doi.org/10.1101/2024.05.07.593074DOI Listing

Publication Analysis

Top Keywords

epr system
8
conformational exchange
8
spin-labeled proteins
8
time domain
8
system
5
pressure
5
pressure-jump epr
4
system monitor
4
monitor millisecond
4
millisecond conformational
4

Similar Publications

Enhanced degradation of phenol by VUV/SPC synergism: Promotion of •OH and •CO formation.

J Hazard Mater

September 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

A novel vacuum ultraviolet (VUV)-activated sodium percarbonate (SPC) system (VUV/SPC) was developed for efficient degradation of micropollutants such as phenol. The VUV/SPC system achieved 98.4 % phenol removal within 3 min, with pseudo-first-order rate constants 4.

View Article and Find Full Text PDF

The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.

View Article and Find Full Text PDF

Delta under pressure: A holistic assessment of morphodynamic change in the Indian Sundarbans from 1972 to 2025.

Mar Pollut Bull

September 2025

CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

The Indian Sundarban Delta (ISD), located at the confluence of the Ganga-Brahmaputra-Meghna river system along India's eastern coast, is among the world's most geomorphologically dynamic and environmentally vulnerable deltaic systems. Over the past five decades, the region has undergone substantial morphodynamic changes driven by natural forces such as relative sea-level rise, wave action, and sediment flux, as well as anthropogenic factors like upstream water regulation via dams and barrages. This study examines the long-term evolution of shoreline and island morphology across the ISD from 1972 to 2025 using multi-temporal Landsat datasets under consistent tidal conditions.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF