MSI-DTI: predicting drug-target interaction based on multi-source information and multi-head self-attention.

Brief Bioinform

Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying drug-target interactions (DTIs) holds significant importance in drug discovery and development, playing a crucial role in various areas such as virtual screening, drug repurposing and identification of potential drug side effects. However, existing methods commonly exploit only a single type of feature from drugs and targets, suffering from miscellaneous challenges such as high sparsity and cold-start problems. We propose a novel framework called MSI-DTI (Multi-Source Information-based Drug-Target Interaction Prediction) to enhance prediction performance, which obtains feature representations from different views by integrating biometric features and knowledge graph representations from multi-source information. Our approach involves constructing a Drug-Target Knowledge Graph (DTKG), obtaining multiple feature representations from diverse information sources for SMILES sequences and amino acid sequences, incorporating network features from DTKG and performing an effective multi-source information fusion. Subsequently, we employ a multi-head self-attention mechanism coupled with residual connections to capture higher-order interaction information between sparse features while preserving lower-order information. Experimental results on DTKG and two benchmark datasets demonstrate that our MSI-DTI outperforms several state-of-the-art DTIs prediction methods, yielding more accurate and robust predictions. The source codes and datasets are publicly accessible at https://github.com/KEAML-JLU/MSI-DTI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102638PMC
http://dx.doi.org/10.1093/bib/bbae238DOI Listing

Publication Analysis

Top Keywords

drug-target interaction
8
multi-head self-attention
8
feature representations
8
knowledge graph
8
msi-dti predicting
4
drug-target
4
predicting drug-target
4
interaction based
4
multi-source
4
based multi-source
4

Similar Publications

Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.

Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.

View Article and Find Full Text PDF

Concomitant Comedications and Survival With First-Line Pembrolizumab in Advanced Non-Small-Cell Lung Cancer.

JAMA Netw Open

September 2025

Oncostat U1018, Institut National de la Santé et de la Recherche Médicale (INSERM), Ligue Contre le Cancer, Paris-Saclay University, Villejuif, France.

Importance: Antibiotics, steroids, and proton pump inhibitors (PPIs) are suspected to decrease the efficacy of immunotherapy.

Objective: To explore the association of comedications with overall survival (OS) in patients with advanced non-small-cell lung cancer (NSCLC).

Design, Setting, And Participants: This nationwide retrospective cohort study used target trial emulations of patients newly diagnosed with NSCLC from January 2015 to December 2022, identified from the French national health care database.

View Article and Find Full Text PDF

Advances in neuroscientific mechanisms and therapies for glioblastoma.

iScience

September 2025

Department of Molecular Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, QingDao, Shandong 266300, China.

Gliomas are common primary brain tumors in the central nervous system, characterized by invasiveness, heterogeneity, and drug resistance, posing a threat to patients' lives. Glioblastoma (IDH wild-type) exhibits the highest invasiveness and mortality rate, making it a challenging therapeutic target. This review first outlines the characteristics of gliomas and their impact on the nervous system, then explores the pathological mechanisms and unique behaviors of glioblastoma (IDH wild-type), as well as the influence of the nervous system on its occurrence and progression.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

A novel isatin-thiazole-coumarin hybrid and three isatin-hydantoin hybrids were synthesized and assessed for their α-glucosidase and anticholinesterase inhibitory activities. Moreover, their anticancer properties have been observed against the breast cancer cell lines MCF-7 and MDA-MB-231. The coumarin-containing hybrid exhibited the most potent biological activity across all assays.

View Article and Find Full Text PDF