Evaluating the biomolecular interaction between delamanid/formulations and human serum albumin by fluorescence, CD spectroscopy and SPR: Effects on protein conformation, kinetic and thermodynamic parameters.

Colloids Surf B Biointerfaces

Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand. Electronic address:

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Delamanid is an anti-tuberculosis drug used for the treatment of drug-resistant tuberculosis. Since delamanid has a high protein bound potential, even patients with low albumin levels should experience high and rapid delamanid clearance. However, the interaction between delamanid and albumin should be better controlled to optimize drug efficacy. This study was designed to evaluate the binding characteristics of delamanid to human serum albumin (HSA) using various methods: fluorescence spectroscopy, circular dichroism (CD), surface plasmon resonance (SPR), and molecular docking simulation. The fluorescence emission band without any shift indicated the interaction was not affected by the polarity of the fluorophore microenvironment. The reduction of fluorescence intensity at 344 nm was proportional to the increment of delamanid concentration as a fluorescence quencher. UV-absorbance measurement at the maximum wavelength (λ, 280 nm) was evaluated using inner filter effect correction. The HSA conformation change was explained by the intermolecular energy transfer between delamanid and HSA during complex formation. The study, which was conducted at temperatures of 298 K, 303 K, and 310 K, revealed a static quenching mechanism that correlated with a decreased of bimolecular quenching rate constant (kq) and binding constant (Ka) at increased temperatures. The Ka was 1.75-3.16 × 10 M with a specific binding site with stoichiometry 1:1. The negative enthalpy change, negative entropy change, and negative Gibbs free energy change demonstrated an exothermic-spontaneous reaction while van der Waals forces and hydrogen bonds played a vital role in the binding. The molecular displacement approach and molecular docking confirmed that the binding occurred mainly in subdomain IIA, which is a hydrophobic pocket of HSA, with a theoretical binding free energy of -9.33 kcal/mol. SPR exhibited a real time negative sensorgram that resulted from deviation of the reflex angle due to ligand delamanid-HSA complex forming. The binding occurred spontaneously after delamanid was presented to the HSA surface. The SPR mathematical fitting model revealed that the association rate constant (k) was 2.62 × 10 sM and the dissociation rate constant (k) was 5.65 × 10 s. The complexes were performed with an association constant (K) of 4.64 × 10 M and the dissociation constant (K) of 2.15 × 10 M. The binding constant indicated high binding affinity and high stability of the complex in an equilibrium. Modified CD spectra revealed that conformation of the HSA structure was altered by the presence of delamanid during preparation of the proliposomes that led to the reduction of secondary structure stabilization. This was indicated by the percentage decrease of α-helix. These findings are beneficial to understanding delamanid-HSA binding characteristics as well as the drug administration regimen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.113964DOI Listing

Publication Analysis

Top Keywords

rate constant
12
binding
10
delamanid
9
human serum
8
serum albumin
8
fluorescence spectroscopy
8
binding characteristics
8
molecular docking
8
binding constant
8
change negative
8

Similar Publications

Introduction/objectives: Irreparable subscapularis tears can cause severe functional impairment and present significant clinical challenges. Current treatment options include tendon transfers (TTs), anterior capsular reconstruction, and reverse shoulder arthroplasty. Each approach has distinct biomechanical advantages and limitations, but there remains no consensus regarding the optimal treatment.

View Article and Find Full Text PDF

Fluorine-oxygen dual sites engineered on carbon enable high efficiency in the cycloaddition of carbon dioxide: synergistic effect, density functional theory validation and kinetic modeling.

J Colloid Interface Sci

September 2025

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China. Electronic address:

Fluorine (F)-doped carbon materials (FCMs) were one-pot synthesized and applied as the catalysts for the cycloaddition of carbon dioxide (CO) towards the cyclic carbonate for the first time. In this process, F dopants and oxygen (O)-containing groups on the carbon surface played a key role in enhancing the activity. The FCM synthesized at 500 °C (FCM-500) with 5.

View Article and Find Full Text PDF

Wastewater as a dual indicator of human and environmental exposure to synthetic antioxidants: Occurrence and fate in biological and advanced wastewater treatment.

Environ Int

August 2025

Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092, Zurich, Switzerland. Electronic address:

Synthetic antioxidants (SAOs) are widely used additives in industrial and consumer products, yet their human exposure and fate throughout wastewater treatment remain poorly understood. This study investigates the occurrence of SAOs and their human metabolites in wastewater influent as well as their abatement in three wastewater treatment plants (WWTPs) employing both conventional and advanced treatment technologies. In vitro human liver S9 assays were performed to generate a SAO metabolite MS2 library containing over 2500 potential metabolites, which was matched against wastewater influent data.

View Article and Find Full Text PDF

Role of hydrogen sulfide in catalyzing the formation of NO-ferroheme.

Nitric Oxide

September 2025

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA. Electronic address:

We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.

View Article and Find Full Text PDF

A carbohydrate placebo (CHO-PLA) is a non-metabolic substance guised as carbohydrate. When information about the treatment was not disclosed, CHO-PLA enhanced strength performance through the sweetness cue, which psychologically strengthened participants' belief in its efficacy. However, the effects of CHO-PLA when participants are misinformed that they are consuming actual carbohydrates, and the role of additional cues (visual reinforcement), remain less understood.

View Article and Find Full Text PDF