98%
921
2 minutes
20
A broad range of chemical transformations driven by catalytic processes necessitates the electron transfer between catalyst and substrate. The redox cycle limitation arising from the inequivalent electron donation and acceptance of the involved catalysts, however, generally leads to their deactivation, causing substantial economic losses and environmental risks. Here, a "non-redox catalysis" strategy is provided, wherein the catalytic units are constructed by atomic Fe and B as dual active sites to create tensile force and electric field, which allows directional self-decomposition of peroxymonosulfate (PMS) molecules through internal electron transfer to form singlet oxygen, bypassing the need of electron transfer between catalyst and PMS. The proposed catalytic approach with non-redox cycling of catalyst contributes to excellent stability of the active centers while the generated reactive oxygen species find high efficiency in long-term catalytic pollutant degradation and selective organic oxidation synthesis in aqueous phase. This work offers a new avenue for directional substrate conversion, which holds promise to advance the design of alternative catalytic pathways for sustainable energy conversion and valuable chemical production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202405832 | DOI Listing |
Nat Methods
September 2025
Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK.
Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.
View Article and Find Full Text PDFNature
September 2025
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
As a key mitochondrial Ca transporter, NCLX regulates intracellular Ca signalling and vital mitochondrial processes. The importance of NCLX in cardiac and nervous-system physiology is reflected by acute heart failure and neurodegenerative disorders caused by its malfunction. Despite substantial advances in the field, the transport mechanisms of NCLX remain unclear.
View Article and Find Full Text PDFJ Org Chem
September 2025
Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China.
We previously reported that the attempt to synthesize tetramethoxyindolo[3,2-]indole led to an undefined product. Now, it is confirmed that its instability is derived from the one-electron transfer from the tetramethoxyindolo[3,2-]indole derivatives to halogenated solvents under ultraviolet-visible (UV-vis) light irradiation, forming a stable indolo[3,2-]indole radical cation while causing the carbon-halogen (C-X, X = Cl, Br, I) bond scission.
View Article and Find Full Text PDFEnviron Res
September 2025
Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:
The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.
View Article and Find Full Text PDFAm J Hum Genet
September 2025
Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address: erid
Fetal brain anomalies identified by prenatal ultrasound and/or magnetic resonance imaging represent a considerable healthcare burden with ∼1-2/1,000 live births. To identify the underlying etiology, trio prenatal exome sequencing or genome sequencing (ES/GS) has emerged as a comprehensive diagnostic paradigm with a reported diagnostic rate up to ∼32%. Here, we report five unrelated families with six affected individuals that presented neuroanatomical, craniofacial, and skeletal anomalies, all harboring rare, bi-allelic deleterious variants in SNAPIN, which encodes SNARE-associated protein.
View Article and Find Full Text PDF