98%
921
2 minutes
20
Aims: To investigate the impact of real-time continuous glucose monitoring (rtCGM) on glycaemia in a predominantly indigenous (Māori) population of adults with insulin-requiring type 2 diabetes (T2D) in New Zealand.
Methods: Twelve-week, multicentre randomised controlled trial (RCT) of adults with T2D using ≥0.2 units/kg/day of insulin and elevated glycated haemoglobin (HbA1c) ≥64 mmol/mol (8.0%). Following a 2-week blinded CGM run-in phase, participants were randomised to rtCGM or control (self-monitoring blood glucose [SMBG]). The primary outcome was time in the target glucose range (3.9-10 mmol/L; TIR) during weeks 10-12, with data collected by blinded rtCGM in the control group.
Results: Sixty-seven participants entered the RCT phase (54% Māori, 57% female), median age 53 (range 16-70 years), HbA1c 85 (IQR 74, 94) mmol/mol (9.9 [IQR 8.9, 10.8]%), body mass index (36.7 ± 7.7 kg/m). Mean (±SD) TIR increased from 37 (24)% to 53 (24)% [Δ 13%; 95% CI 4.2 to 22; P = 0.007] in the rtCGM group but did not change in the SMBG group [45 (21)% to 45 (25)%, Δ 2.5%, 95% CI -6.1 to 11, P = 0.84]. Baseline-adjusted between-group difference in TIR was 10.4% [95% CI -0.9 to 21.7; P = 0.070]. Mean HbA1c (±SD) decreased in both groups from 85 (18) mmol/mol (10.0 [1.7]%) to 64 (16) mmol/mol (8.0 [1.4]%) in the rtCGM arm and from 81 (12) mmol/mol (9.6 [1.1]%) to 65 (13) mmol/mol (8.1 [1.2]%) in the SMBG arm (P < 0.001 for both). There were no severe hypoglycaemic or ketoacidosis events in either group.
Conclusions: Real-time CGM use in a supportive treat-to-target model of care likely improves glycaemia in a population with insulin-treated T2D and elevated HbA1c.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dme.15348 | DOI Listing |
Diabetologia
September 2025
Centre Universitaire de Diabétologie et de ses Complications, AP-HP, Hôpital Lariboisière, Paris, France.
Aims/hypothesis: Severe hypoglycaemia events (SHE) remain frequent in people with type 1 diabetes despite advanced diabetes technologies. We examined whether time below range (TBR) 3.9 mmol/l (70 mg/dl; TBR70) or 3.
View Article and Find Full Text PDFNMR Biomed
October 2025
High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Department of Metabolic Disease Research, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Electrical pulse stimulation (EPS) represents a useful tool to study exercise-related adaptations of muscle cells in vitro. Here, we examine the metabolic and secretory response of primary human muscle cells from metabolically healthy individuals to the EPS protocol reflecting the episodic nature of real-life exercise training. This intermittent EPS protocol alternates high-frequency stimulation periods with low-frequency resting periods.
View Article and Find Full Text PDFNat Rev Endocrinol
September 2025
Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital (USZ) and University of Zurich (UZH), Zurich, Switzerland.
Wearable technologies that analyse non-conventional biological matrices, such as interstitial fluid, sweat, tears or breath, have the potential to provide longitudinal biomarker data with minimal invasiveness. These data could provide insights into physiological and behavioural patterns, in particular outside medical care facilities. Despite the success of continuous glucose monitoring, the adoption of wearable sensors for managing endocrine and metabolic diseases remains limited.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada. Electronic address:
This chapter, "Implantable Biosensors: Advancements and Applications," provides a succinct overview of the state-of-the-art in implantable biosensor technology, highlighting both established clinical uses and promising areas of ongoing research. It begins by outlining the fundamental principles and advantages of these sensors, such as their precision in physiological monitoring and capability for real-time therapeutic interventions. A variety of implantable sensors are categorized, including biophysical and biochemical types, each designed for specific medical applications.
View Article and Find Full Text PDF