98%
921
2 minutes
20
Electrical pulse stimulation (EPS) represents a useful tool to study exercise-related adaptations of muscle cells in vitro. Here, we examine the metabolic and secretory response of primary human muscle cells from metabolically healthy individuals to the EPS protocol reflecting the episodic nature of real-life exercise training. This intermittent EPS protocol alternates high-frequency stimulation periods with low-frequency resting periods. Continuous EPS was used as a comparator. Radiometric assessment of glucose and fatty acid metabolism was complemented by examination of mitochondrial OxPHOS proteins, fiber-type markers, and the release of selected myokines and extracellular vesicles into the media. Both EPS protocols facilitated glycogen synthesis and incomplete fatty acid oxidation (intermediary metabolites accumulation), while complete glucose and fatty acid oxidation (CO production) was increased only after the intermittent stimulation. Continuous stimulation elicited robust release of the contraction-regulated myokines (IL6, IL8) into the media. Both EPS protocols increased expression of oxidative fiber-type markers (MYH2, MYH7), while inducing protein expression of a putative myokine, growth differentiation factor11 (GDF11) and a release of extracellular vesicles into the media. In conclusion, intermittent electrical pulse stimulation enhanced the rate of complete glucose and fatty acid oxidation in differentiated muscle cells from metabolically healthy individuals, while it was comparable to continuous stimulation in modulating markers of oxidative fibers and a putative myokine GDF11, and less effective in stimulating the release of myokines IL6, IL8, and extracellular vesicles into the media. Intermittent EPS-a protocol mimicking the episodic nature of exercise-can be used for studying metabolism and the secretome of skeletal muscle cells in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/2211-5463.70114 | DOI Listing |
Arterioscler Thromb Vasc Biol
September 2025
Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, MA (K. Cui, B.Z., B.W., S.E.-B., A.V., H.C.).
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.
View Article and Find Full Text PDFVasc Specialist Int
September 2025
Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
An abdominal aortic aneurysm (AAA) is defined as a localized dilation of the abdominal aorta measuring at least 1.5 times its normal diameter. If left untreated, AAA can progress to a life-threatening condition.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
September 2025
Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
October 2025
Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
Background: Body composition alterations such as skeletal muscle (SM) loss in cancer patients are associated with poor survival. In turn, immune cell-driven pathways have been linked to muscle wasting. We aimed to investigate the relationship between body composition, tumour-infiltrating lymphocytes and survival in patients with advanced lung cancer.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDF