Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solid-state reactions play a key role in materials science. The evolution of the structure of a single 350 nm NiFe nanoparticle, , its morphology (facets) as well as its deformation field, has been followed by applying multireflection Bragg coherent diffraction imaging. Through this approach, we unveiled a demixing process that occurs at high temperatures (600 °C) under an Ar atmosphere. This process leads to the gradual emergence of a highly strained core-shell structure, distinguished by two distinct lattice parameters with a difference of 0.4%. Concurrently, this transformation causes the facets to vanish, ultimately yielding a rounded core-shell nanoparticle. This final structure comprises a NiFe core surrounded by a 40 nm Ni-rich outer shell due to preferential iron oxidation. Providing in situ 3D imaging of the lattice parameters at the nanometer scale while varying the temperature, this study─with the support of atomistic simulations─not only showcases the power of in situ multireflection BCDI but also provides valuable insights into the mechanisms at work during a solid-state reaction characterized by a core-shell transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c11534DOI Listing

Publication Analysis

Top Keywords

core-shell structure
8
nife nanoparticle
8
coherent diffraction
8
diffraction imaging
8
lattice parameters
8
unveiling core-shell
4
structure
4
structure formation
4
formation nife
4
nanoparticle situ
4

Similar Publications

Fluoroquinolones are a popular class of antibiotics, which can lead to residues in food and the environment due to their abuse and illegal use. Consequently, this can pose a threat to human health. We hypothesized that a core-shell structured magnetic lanthanide metal-organic framework could serve as an effective dual-mode nanosensor, leveraging its antenna effect and peroxidase (POD)-like activity for the sensitive detection of fluoroquinolones.

View Article and Find Full Text PDF

Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.

View Article and Find Full Text PDF

A Core-Shell Structured Microneedle Patch With Adjustable Release of Kinetically for the Treatment of Melasma.

Adv Healthc Mater

September 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.

Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.

View Article and Find Full Text PDF

Interstitial Cobalt in Pt Shell of Pd@Pt Mesoporous Core-Shell Nanospheres with Strong d-d Orbital Hybridization for Enhanced Electrocatalytic Ammonia Oxidation.

Adv Mater

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi

Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.

View Article and Find Full Text PDF

Two birds with one stone: Versatile lanthanide-doped core-shell-shell nanoparticles with enhanced red upconversion for nanothermometry and MR imaging.

J Colloid Interface Sci

September 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy

Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.

View Article and Find Full Text PDF