Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Parkinson's Disease is the second most common neurological disease in over 60s. Cognitive impairment is a major clinical symptom, with risk of severe dysfunction up to 20 years post-diagnosis. Processes for detection and diagnosis of cognitive impairments are not sufficient to predict decline at an early stage for significant impact. Ageing populations, neurologist shortages and subjective interpretations reduce the effectiveness of decisions and diagnoses. Researchers are now utilising machine learning for detection and diagnosis of cognitive impairment based on symptom presentation and clinical investigation. This work aims to provide an overview of published studies applying machine learning to detecting and diagnosing cognitive impairment, evaluate the feasibility of implemented methods, their impacts, and provide suitable recommendations for methods, modalities and outcomes.

Methods: To provide an overview of the machine learning techniques, data sources and modalities used for detection and diagnosis of cognitive impairment in Parkinson's Disease, we conducted a review of studies published on the PubMed, IEEE Xplore, Scopus and ScienceDirect databases. 70 studies were included in this review, with the most relevant information extracted from each. From each study, strategy, modalities, sources, methods and outcomes were extracted.

Results: Literatures demonstrate that machine learning techniques have potential to provide considerable insight into investigation of cognitive impairment in Parkinson's Disease. Our review demonstrates the versatility of machine learning in analysing a wide range of different modalities for the detection and diagnosis of cognitive impairment in Parkinson's Disease, including imaging, EEG, speech and more, yielding notable diagnostic accuracy.

Conclusions: Machine learning based interventions have the potential to glean meaningful insight from data, and may offer non-invasive means of enhancing cognitive impairment assessment, providing clear and formidable potential for implementation of machine learning into clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098383PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303644PLOS

Publication Analysis

Top Keywords

machine learning
32
cognitive impairment
32
detection diagnosis
20
diagnosis cognitive
20
parkinson's disease
20
impairment parkinson's
16
cognitive
9
machine
8
learning detection
8
impairment
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF