98%
921
2 minutes
20
Background: Vancomycin-resistant enterococcal (VRE) infections pose significant challenges in healthcare. Transmission dynamics of VRE are complex, often involving patient colonization and subsequent transmission through various healthcare-associated vectors. We utilized a whole genome sequencing (WGS) surveillance program at our institution to better understand the contribution of clinical and colonizing isolates to VRE transmission.
Methods: We performed whole genome sequencing on 352 VRE clinical isolates collected over 34 months and 891 rectal screening isolates collected over a 9-month nested period, and used single nucleotide polymorphisms to assess relatedness. We then performed a geo-temporal transmission analysis considering both clinical and rectal screening isolates compared with clinical isolates alone, and calculated 30-day outcomes of patients.
Results: VRE rectal carriage constituted 87.3% of VRE acquisition, with an average monthly acquisition rate of 7.6 per 1000 patient days. We identified 185 genetically related clusters containing 2-42 isolates and encompassing 69.6% of all isolates in the dataset. The inclusion of rectal swab isolates increased the detection of clinical isolate clusters (from 53% to 67%, P<0.01). Geo-temporal analysis identified hotspot locations of VRE transmission. Patients with clinical VRE isolates that were closely related to previously sampled rectal swab isolates experienced 30-day ICU admission (17.5%), hospital readmission (9.2%), and death (13.3%).
Conclusions: Our findings describe the high burden of VRE transmission at our hospital and shed light on the importance of using WGS surveillance of both clinical and rectal screening isolates to better understand the transmission of this pathogen. This study highlights the potential utility of incorporating WGS surveillance of VRE into routine hospital practice for improving infection prevention and patient safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092704 | PMC |
http://dx.doi.org/10.1101/2024.05.01.24306710 | DOI Listing |
J Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
Two yeast strains, PYCC 10015 and PYCC 10016, were isolated from soil from an Irish forest. Sequence analysis of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rRNA gene repeat, and the D1/D2 domain of the LSU rRNA gene, showed that they belong to the and genera of the order , but they did not exactly match any known species.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, P.O. 54590, Lahore, Pakistan.
Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFStress Biol
September 2025
Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.
View Article and Find Full Text PDF