Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, we report the genomic characterization of a pan drug-resistant (PDR) enteroaggregative Escherichia coli (EAEC) isolated from an immunocompromised infant who had diarrhea. The isolate belonged to the sequence type (ST) 38, which is a known enteroaggregative Escherichia coli (EAEC)/uropathogenic Escherichia coli (UPEC) hybrid strain having multi-drug resistance (MDR). The strain carried genes encoding multiple resistances to carbapenems, third-generation cephalosporins, polymyxin, fluoroquinolones, aminoglycosides, fosfomycin, nitrofurantoin, sulphonamides, and multiple efflux pump genes. Interspecies horizontal transfer, inter-strain, and clonal spread of these resistances to commensals and pathogens will be worrisome. We are concerned about the spread of such PDR strains. The genomic characterization of such strains will be useful in understanding the genetic makeup of EAEC/UPEC hybrid strains and developing new vaccines/diagnostics and therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmmb.2024.100606DOI Listing

Publication Analysis

Top Keywords

escherichia coli
16
enteroaggregative escherichia
12
pan drug-resistant
8
eaec/upec hybrid
8
genomic characterization
8
genome sequence
4
sequence pan
4
drug-resistant enteroaggregative
4
escherichia
4
coli
4

Similar Publications

Antimicrobial resistance (AMR) is a significant public health concern globally, and Pakistan is no exception. The misuse and overuse of antibiotics, inadequate regulation of their sale, and a lack of awareness contribute to the rising levels of AMR in the country. study presents a detailed analysis of blood and urine samples collected in Pakistan over various periods, focusing on pathogen prevalence, gender distribution, and age-wise patterns.

View Article and Find Full Text PDF

Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.

View Article and Find Full Text PDF

There is no vaccine for severe malaria. STEVOR antigens on the surface of -infected red blood cells are implicated in severe malaria and are targeted by neutralizing antibodies, but their epitopes remain unknown. Using computational immunology, we identified highly immunogenic overlapping B- and T-cell epitopes (referred to as multiepitopes, 7-27 amino acids) in the semiconserved domain of four STEVORs linked with severe malaria and clinical immunity.

View Article and Find Full Text PDF

Bioinspired Multifunctional Eutectogels for Skin-Like Flexible Strain Sensors with Potential Application in Deep-Learning Handwriting Recognition.

Langmuir

September 2025

Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.

Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF