98%
921
2 minutes
20
The biological treatment of wastewater generates a substantial amount of waste sludge that requires dewatering before final disposal. Efficient sludge dewatering is essential to minimize storage and transportation costs. In this study, the sludge conditioners polydimethyldiallylammonium chloride (PDMDAAC) and ferric chloride (FeCl) were sequentially dosed, and the pH was adjusted to 3. As a result, the sludge moisture content (MC) was reduced to 59.4%, achieving deep dewatering. After conditioning, the tightly bound extracellular polymeric substances (TB-EPS) were reduced from 34.5 to 10.2 mg g VSS, with the majority of the reduced fractions being composed of protein (PN). In contrast, soluble EPS increased more than 8 times. Subsequent studies revealed that the decrease in PN from TB-EPS primarily involved tryptophan and tyrosine proteins, accompanied by a significant reduction in the N-H and C[double bond, length as m-dash]C absorption peaks. These results highlight the critical role of TB-EPS dissolution in achieving deep dehydration, with the N-H in PN was identified as the key group influencing sludge dewatering. Combined with the changes in sludge particle size and morphology, the dewatering mechanism can be summarized as follows: PDMDAAC dissolves TB-EPS, simultaneously disrupting the floc structure and refining the sludge. Subsequently, FeCl reconstructs these elements, forming larger particle sizes. Finally, hydrochloric acid reduces TB-EPS once again, releasing bound water. This study offers alternative methods and new insights for achieving deep dewatering of waste sludge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078143 | PMC |
http://dx.doi.org/10.1039/d4ra01311e | DOI Listing |
Environ Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho
The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).
View Article and Find Full Text PDFEnviron Technol
September 2025
School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, People's Republic of China.
Food waste (FW) has high production potential that can be converted into renewable energy in the form of biogas during anaerobic digestion (AD). Batch tests under mesophilic (37°) disgestion were performed to evaluate the effects of different dosage ratios (10-35%), salts (0-20 g·L) and oil content (0-20 g·L) on methane (CH) production, process stability and organic reduction during the AD. The results showed that optimal CH occurred at a dosage ratio of 20%, while ratios > 30% caused inhibition.
View Article and Find Full Text PDFBioresour Technol
September 2025
Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
The recovery of lactic acid (LA) from the co-fermentation of food waste and waste activated sludge is shifting from feasibility studies to process optimization and predictive modeling. This study extends the widely used International Water Association Anaerobic Digestion Model No.1 (ADM1) by incorporating lactic acid bacteria-mediated pathways and adjusted stoichiometry to simulate LA generation from sugars, implemented in the GPS-X simulation platform.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
Designing long-lived excitons in photocatalysts is crucial for efficient charge separation. However, most of the current organic photocatalysts are characterized by a relatively short exciton lifetime within the range of picoseconds due to localized excitons with large binding energies. Herein, we report the design of ultralong-lived excitons with a lifetime exceeding 8000 ps by constructing metallo-quinoline-incorporated covalent organic frameworks (COFs).
View Article and Find Full Text PDF