A new framework for exploratory network mediator analysis in omics data.

Genome Res

Shenzhen Research Institute of Big Data, School of Data Science, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China;

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Omics methods are widely used in basic biology and translational medicine research. More and more omics data are collected to explain the impact of certain risk factors on clinical outcomes. To explain the mechanism of the risk factors, a core question is how to find the genes/proteins/metabolites that mediate their effects on the clinical outcome. Mediation analysis is a modeling framework to study the relationship between risk factors and pathological outcomes, via mediator variables. However, high-dimensional omics data are far more challenging than traditional data: (1) From tens of thousands of genes, can we overcome the curse of dimensionality to reliably select a set of mediators? (2) How do we ensure that the selected mediators are functionally consistent? (3) Many biological mechanisms contain nonlinear effects. How do we include nonlinear effects in the high-dimensional mediation analysis? (4) How do we consider multiple risk factors at the same time? To meet these challenges, we propose a new exploratory mediation analysis framework, medNet, which focuses on finding mediators through predictive modeling. We propose new definitions for predictive exposure, predictive mediator, and predictive network mediator, using a statistical hypothesis testing framework to identify predictive exposures and mediators. Additionally, two heuristic search algorithms are proposed to identify network mediators, essentially subnetworks in the genome-scale biological network that mediate the effects of single or multiple exposures. We applied medNet on a breast cancer data set and a metabolomics data set combined with food intake questionnaire data. It identified functionally consistent network mediators for the exposures' impact on the outcome, facilitating data interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146592PMC
http://dx.doi.org/10.1101/gr.278684.123DOI Listing

Publication Analysis

Top Keywords

risk factors
16
omics data
12
network mediator
8
data
8
mediate effects
8
mediation analysis
8
nonlinear effects
8
network mediators
8
data set
8
network
5

Similar Publications

To analyze in-hospital mortality in children undergoing congenital heart interventions in the only public referral center in Amazonas, North Brazil, between 2014 and 2022. This retrospective cohort study included 1041 patients undergoing cardiac interventions for congenital heart disease, of whom 135 died during hospitalization. Records were reviewed to obtain demographic, clinical, and surgical data.

View Article and Find Full Text PDF

Importance: Higher intellectual abilities have been associated with lower mortality risk in several longitudinal cohort studies. However, these studies did not fully account for early life contextual factors or test whether the beneficial associations between higher neurocognitive functioning and mortality extend to children exposed to early adversity.

Objective: To explore how the associations of child neurocognition with mortality changed according to the patterns of adversity children experienced.

View Article and Find Full Text PDF

Background: Ovarian cancer remains the most lethal gynecological cancer, with fewer than 50% of patients surviving more than five years after diagnosis. This study aimed to analyze the global epidemiological trends of ovarian cancer from 1990 to 2021 and also project its prevalence to 2050, providing insights into these evolving patterns and helping health policymakers use healthcare resources more effectively.

Methods: This study comprehensively analyzes the original data related to ovarian cancer from the GBD 2021 database, employing a variety of methods including descriptive analysis, correlation analysis, age-period-cohort (APC) analysis, decomposition analysis, predictive analysis, frontier analysis, and health inequality analysis.

View Article and Find Full Text PDF